Pontos, Linhas e Métricas #03: nós / vértices

[O texto a seguir faz parte de uma série que pode ser visualizada em “Pontos, Linhas e Métricas: introdução à análise estrutural de redes sociais”]

Neste e no próximo texto vamos falar dos dois principais elementos das redes sociais, os nós e os laços. Ou, como nos referimos de forma super simplificada, nos referindo à sua visualização, os pontos e linhas. Mas, antes de qualquer coisa, é preciso lembrar o seguinte. Qualquer rede é uma representação convencional do que se está sendo observado. Manejar, construir e analisar redes envolve atos de escolha sobre o que será analisado.

Desta forma, uma análise pode considerar apenas uma pequena rede na qual se considera um nó cada pessoa e um laço cada relação de amizade. Outra, por sua vez, pode considerar cada nó um artigo acadêmico e um laço as referências bibliográficas. Tudo vai depender dos objetivos e informações buscadas. Para entendermos estes elementos básicos, precisamos entender bem o que são nós e laços. Vamos começar pelos primeiros:

Pontos | Nós | Vértices

Como puderam perceber, os nomes utilizados aqui para falar dos nós (e na próxima seção para falar das ligações) são muitos: pontos, nós, vértices…. Geralmente, existe pouca distinção entre um termo ou outro e, na maioria dos casos, não importa. Mas, como Barabási (2012, p.26) nos explica, na ciência das redes se fala de redes, nós (nodes) e laços (links), enquanto na teoria dos grafos se fala de grafo, vértices (vértices) e arestas (edges). A teoria dos grafos, proveniente da matemática, é uma das bases para a ciência das redes e sua análise estrututural, mas falaremos dela em uma postagem mais à frente.

Aqui, voltando aos nós, devemos pontuar que, na análise estrutural de redes sociais, os elementos analisados são aqueles que podem ser individualizados e representam algum ator social, grupo social ou produto realizado por estes. O conceito de nó é extremamente simples, como podemos ver nas definições que são dadas a estes, geralmente durante a própria apresentação do que é uma rede:

“Um grafo consiste de um conjunto de objetos, chamados nós, com certos pares destes objetos conectados por ligações chamadas arestas” (EASLEY & KLEINBERG, 2009, p.31);

“Nós são os atores individuais dentro das redes, enquanto laços são as relações entre os atores” (PASSMORE, 2011, p. 1);

“Enquanto os nós são geralmente representados pelos atores envolvidos e suas representações na internet […], as conexões são mais plurais em seu entendimento” (FRAGOSO, RECUERO e AMARAL, 2011, p.16);

“Vértices, também chamados de nós, agentes, entidades ou itens, podem representar muitas coisas. Frequentemente representam pessoas ou estruturas sociais como grupos de trabalho, times, organizações, instituições, estados ou mesmo países. Em outros casos eles representam conteúdo como web pages, tags keywords ou vídeos. Eles ainda podem representar locais ou eventos físicos ou virtuais. (HANSEN, SCHNEIDERMAN & SMITH, 2011, p.34).

Observe, na imagem abaixo, uma pequena rede. Cada um dos pontos serve para representar uma pessoa, por exemplo:

Cada um destes nós representa um dos elementos da rede. No caso, é uma rede construída em torno de atores sociais, pessoas. Nesta rede são 13 nós ao todo, como etiquetados abaixo:

É uma rede, com 13 elementos, com seus laços visíveis e que pode ser analisada de acordo com os nossos objetivos, por exemplo: encontrar que pessoas servem de “pontes” entre os grupos da rede, descobrir qual pessoa é mais conectada ou analisar sua densidade.

Como vimos, a análise estrutural de redes pode se debruçar sobre as redes e ligações entre diversos tipos de coisas: elementos químicos, servidores, aeroportos etc.  No caso da análise estrutural de redes sociais, trabalhamos com pessoas, grupos e coisas que podem representar pessoas ou aspectos das pessoas.  Às vezes, os nós podem ser tais objetos, que estão ligados ou desconectados entre si devido a outros parâmetros. O exemplo abaixo é de um projeto da Amazon Labs, que mostra a rede de co-ocorrência de compras em torno de um determinado livro.

 

O programa de visualização acima, produzido por Andrei Kashcha, cria um laço para cada livro recomendado pela Amazon no quesito “livros comprados juntos”. Em outras palavras, para cada livro no site, é criado um nó que tem laços com outros a partir das compras realizadas por usuários reais. Não existe um laço social propriamente dito entre as pessoas que nem sequer estão representadas diretamente nesta rede. Mas os laços apresentados são fruto de milhares de ações sociais (consumo) e, portanto, a rede pode ser considerada fruto das dinâmicas sociais e nos permitem apreender algumas tendências.

Voltando aos nós que representam diretamente atores sociais, podemos adicionar atributos aos nós analisados. Não é algo obrigatório, pois como enfatizamos no último post e estamos demonstrando, a simples estruturação dos nós em formato de rede, através das ligações, gera uma amplitude de informações. Mas os atuais programas de coleta e armazenamento de dados de redes permitem adicionar variáveis personalizadas. Por exemplo: idade, sexo, classe, categoria de cliente, etc. Novamente utilizando aquela rede como exemplo, digamos que desejamos mostrar visualmente o gênero da rede, utilizando as cores historicamente associadas aos conceitos de homem e mulher:

A visualização acima, extremamente simples, enfatiza algo muito importante para a análise de redes: é possível manipular as características visuais de todos os elementos das redes para mostrarmos as informações que desejamos. Neste caso, utilizamos duas cores (azul e vermelho) para representar uma codificação binária (homem/mulher). Mais para a frente, mostraremos como manipular tamanho, cor, formato, legendas, posição, opacidade e outros elementos.

Outro exemplo de dados que podem estar vinculados a cada um dos nós são os dados específicos dos perfis de mídias sociais, tais como Facebook e Twitter. Observem as imagens a seguir, que representam agrupamentos em rede e a wordcloud respectiva das bios:

Estas imagens são exemplo fruto de uma das etapas executadas em projetos de Perfilização de Público em Mídias Sociais (Social Media Public Profiling), uma metodologia que criei e explicarei mais à frente, como uma das aplicações da análise de redes sociais. Durante uma das etapas de coleta de dados, realizamos agrupamento (clustering) dos perfis de acordo com algoritmos de rede. Em seguida, extraímos e agrupamos as bios dos membros de cada grupo, para identificar um primeiro nível de afiliação. Isto foi possível porque cada perfil no Twitter, que aqui foi considerado um laço, traz alguns dados adicionais que foram analisados – neste caso, o texto declarativo do campo Bio.

Em resumo: os nós podem representar pessoas, organizações e objetos; podemos adicionar dados relacionais ou de atributos nos nós; e estes dados podem ser calculados e visualizados nas redes. Mas os nós só ganham o status de tais e suas importâncias em rede quando existem os laços, descritos a seguir.

Referências Bibliográficas

BARABÁSI, Albert-Laszló. Network Science. 2012.

FRAGOSO, Suely; RECUERO, Raquel; AMARAL, Adriana. Métodos de Pesquisa para Internet. Porto Alegre: Sulina, 2011. [compre]
HANSEN, Derek; SHNEIDERMAN, Ben; SMITH, Marc. Analyzing Social Media Networks with NodeXL. Burlington: Morgan Kaufamman, 2011. [compre]

PASSMORE, David. Social Network Analysis – Theory and Applications. Online, 2011.

EASLEY, David & KLEINBERG, Jon. Networks, Crowds and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010.

12 Livros para o profissional de mídias sociais ler em 2013 – parte 4

O último post desta série (ver partes 1, 2 e 3) está relacionado ao projeto “Pontos, Linhas e Métricas“: indico aqui três livros essenciais para quem deseja conhecer melhor a análise estrutural de redes sociais.

Análise Estrutural das Redes Sociais, de Vincent Lemieux e Mathieu Ouimet é um livro mais tradicional sobre o tema, escrito por professores do departamento de Ciência Política da Universidade de Laval, no Canadá. No livro se aprofundam em conceitos sobre redes sociais e análise estrutural, técnicas de recolha e tratamento de dados, teorias explicativas que podem ser utilizadas na análise e ainda sete estudos de caso. Todos os casos analisados são de redes “offline”, com coleta de dados também offline, trazendo uma ampla variedade de questões de pesquisa: relações de parentesco, rede sociométrica, capital social, redes de apoio, redes de mobilização, redes de empresa e redes de política pública. É um excelente ponto de partida para quem deseja se aprofundar no tema.

Já uma indicação três-em-um é dos livros dos pesquisadores Albert-László Barabási, Duncan J Watts e Mark Buchanan, respectivamente: Linked, Nexus e Seis Graus de Separação. No Brasil, não por acaso, as três publicações são editadas pela Editora  Leopardo. Os três autores são físicos e procuram mostrar como as dinâmicas de rede estão presentes em praticamente todos os fenômenos naturais e sociais. Barabási, inclusive, posteriormente lançou o livro Bursts – The Hidden Pattern Behind Everything We Do ampliando o debate. Recomendo esta palestra que ele realizou no authors@google.

Porém, destaco aqui o Linked – A Nova Ciência dos Networks, pois Barabási conseguiu gerar uma repercussão maior. Linked é um daqueles livros sobre ciência que procura ser o mais palatável possível, alcançando o grande público. Desse modo, o estilo ficcionalizado, repleto de histórias e anedota ajuda no entendimento. Nos capítulos, explica os principais temas que conseguem alcançar a imprensa, como “seis graus de separação”, “regra 80/20”, “ricos ficam mais ricos” etc.

Por fim, Analyzing Social Media Networks with NodeXL – Insights from a connected world é um excelente manual de como realizar análise de redes sociais com dados extraídos de mídias sociais: Twitter, fóruns, Wikipedia, Facebook e listas de emails. Foi escrito por três dos protagonistas no projeto que criou e desenvolve a ferramenta NodeXL, que o leitor deste blog aprenderá a usar em muito breve.

O livro é dividido em três partes. Na primeira, uma ótima introdução à análise de redes sociais. Em seguida, um tutorial do NodeXL, mostrando as funções básicas, como calcular e visualizar redes, preparo e filtro de dados e técnicas de clustering e agrupamento. A terceira parte, que é maior, mostra na prática como utilizar o NodeXL para gerar informação, com estudos de caso sobre email, fóruns, Twitter, Facebook, hyperlinks, Flickr, YouTube e Wiki.

Bom, estas foram as indicações de leituras para 2013. Para quem estiver acompanhando o projeto “Pontos, Linhas e Métricas“, estas últimas indicações serão especialmente úteis na nossa jornada. Um bom 2013 cheio de conteúdo pra você!

Pontos, Linhas e Métricas #02: análise estrutural de redes

[O texto a seguir faz parte de uma série que pode ser visualizada em “Pontos, Linhas e Métricas: introdução à análise estrutural de redes sociais”]

Análise estrutural de redes (sociais)

A análise de redes é baseada na análise de alguns elementos básicos, como vimos. Esta considera que informação pode ser gerada a partir da análise de como os elementos de um conjunto estão ligados entre si. Há vários precedentes da análise estrutural de redes sociais, mas a análise de redes em si – não necessariamente ligada a entes sociais – também já gerou muitas ideias e discussões. A perspectiva de pensar o mundo como uma grande “rede”, não é nova, sendo utilizada por áreas tão diferentes quanto economia, engenharia de telecomunicações ou ecologia.

Na imagem abaixo podemos ver um exemplo, citado por Mark Buchanan, autor de Nexus (2002), sobre um trabalho de análise da teia alimentar no ecossistema marítima de Benguela, na África do Sul. O autor explica que o ecologista Peter Yodzis, da Universidade de Guelph, que realizou esta análise, estimou que “uma alteração no número de focas poderia influenciar a população de merluzas, através de espécies intermediárias, de mais de 225 milhões de maneiras diferentes, por cadeiras de causa e efeito” (BUCHANAN, 2002, p.6).

Desse modo, pôde-se mostrar para a comunidade pesqueira do local que a solução imaginada para a queda da população de merluzas, abater focas (pois focas comem merluzas), não era algo tão simples. O sistema (ecossistema) é tão complexo que uma relação aparentemente simples de causa e efeito (menos focas = mais merluzas?) na verdade não era nada simples e, até, poderia piorar o problema.

A concepção e ideias sobre “sistema” são alguns dos precedentes da análise estrutural de redes. Como explicam Lemieux e Ouimet, a “análise estrutural diz respeito à forma das relações entre os atores sociais” (2004, p.11). Estes autores mostram como a análise estrutural está próxima da concepção de sistema, ao citar o trabalho de Le Moigne ao definir o que é um sistema no sentido lato:

alguma coisa (seja o que for, supostamente identificável”)

que em alguma coisa (ambiente)

para alguma coisa (finalidade ou projeto)

faz alguma coisa (atividade = funcionamento)

por meio de alguma coisa (estrutura = forma estável)

que se transforma no tempo (evolução)

Ou seja, os fenômenos que analisa através da perspectiva de rede se aproximam destas ideias de sistema por tratarem das relações entre as coisas, enfatizando estas conexões realizadas por ações, efeitos e ligações ao longo do tempo. Barabási, em Linked, também explica este relacionamento das ideias de sistemas e redes:

“A dinâmica presente em várias redes possibilita que estas possam ser consideradas sistemas complexos. Da mesma forma, a recíproca também é verdadeira: muitos sistemas complexos são estudados como se fossem redes. Entende-se sistema como parte da realidade que forma um todo organizado composto de elementos inter-relacionados e complexo como algo que possui um comportamento de difícil previsibilidade, em razão das dinâmicas organizacionais não-lineares. Desta forma, reconhecimentos nas redes de grande importância características de sistemas complexos” (2002, VII-VII).

A análise estrutural de redes sociais, então, permite ver as pessoas ou organizações e suas conexões, permitindo gerar diversos tipos de informações, como: identificar buracos estruturais; nós isolados; pessoas/organizações que servem de “ponte”; identificar como, por que caminhos e com que velocidade uma informação circula pela rede; perceber grupos de pessoas que possuem características em comum; identificar influenciadores; e muitas outras aplicações.

Como um gerente de nível hierárquico relativamente baixo consegue influenciar mais as decisões dos funcionários do que seus chefes? Que tipos de caminhos um meme  percorre ao ser disseminado na blogosfera? Como prever a resolução de um conflito que dividiu uma sala de estudantes? Como um blog chegou ao Page Rank 6? Como as inovações surgem numa universidade? Quais são os  tipos de público que seguem uma marca no Twitter? Estas são apenas algumas das perguntas que pesquisas utilizando análise estrutural de redes sociais conseguem responder, graças a dados relacionais.

Chamamos este projeto de “Pontos, Linhas e Métricas” porque podemos dizer que a análise estrutural de redes sociais se baseia nestes três pilares: os nós, vértices ou pontos, que sempre representam, no caso de redes sociais, pessoas ou organizações; as conexões, arestas ou linhas, que representam as relações entre estes nós; e as métricas de redes, que permitem identificar, através de parâmetros definidos, o tamanho da rede, centralidade dos nós, graus de entrada e saída etc.

E, hoje, podemos demonstrar todos estes pilares em visualizações complexas, úteis e aplicáveis para os pesquisadores. Como escrevem três dos criadores da ferramenta NodeXL, “a perspectiva de rede olha uma coleção de laços em uma população e cria medições que descrevem a localização de cada pessoa ou entidade na estrutura de todos os relacionamentos na rede” (HANSEN, SCHNEIDERMAN e SMITH, 2011, p.32). Abaixo um exemplo simples de uma rede, arbitrária, que foi criada a partir de uma lista que mantenho de perfis Twitter relacionados ao mercado de monitoramento:

É possível ver que, nesta rede em específico, claramente dois grupos separados que foram agrupados de acordo com suas conexões através de um algoritmo. A visualização e análise da rede permite identificar o motivo dos atores sociais em questão estarem agrupados (um grupo é de brasileiros e outro de perfis anglófonos), assim como perceber dois usuários (neste caso, @tatitosi e @arjones) entre os dois grupos. Ao se analisar a informação contextual, percebe-se que isto ocorre por ser de dois brasileiros mais engajados com o mercado internacional, por diversos motivos. Além da visualização, também é possível ver isto em termos quantitativos. A métrica de “centralidade de intermediaridade” (betweeness centrality, que conheceremos a fundo em breve) destes usuários é maior que a média e muito acentuada levando em conta o número de suas conexões.

Então, como dissemos, a análise estrutural de redes sociais se refere à aplicação deste tipo de análise quando falamos de pessoas e/ou grupos ou objetos que representam pessoas e/ou grupos. Estamos falando de nós e ligações, que são os principais elementos das redes sociais, mas ainda não o descrevemos. Futuramente detalharemos melhor os elementos, mas observe aqui que o foco é em um elemento (ator social, no caso), que tem conexões com outros. Em outros tipos de pesquisa, digamos surveys, por exemplo, o foco  está nos atributos (por ex., gênero, local, intenção de voto) e o cruzamento entre estes dados de atributos. Já na análise estrutural, o foco está nas relações. Parte-se da análise de como os nós se conectam e relacionam para realizar a análise que, posteriormente, pode agregar dados de atributos e outros. E as conexões podem ser de diversos tipos, intensidades e direções.

Vamos retomar aqui o exemplo da rede de melhores amigos de Teobaldo, que vimos na última postagem. Primeiro, a lista dos melhores amigos feita pelo Teobaldo, dispostos aleatoriamente. Na parte de baixo, uma rede resultante de “quem conhece quem” desta lista de melhores amigos. Observe que apenas esta visualização simples já nos dá pistas de como entender as relações sociais de Teobaldo. Há alguns amigos agrupados entre si, alguns isolados e alguns que servem como ponte. Ou seja, esta simples visualização já cria alguns modos de olhar os dados que ajudarão um pesquisador – ou o próprio Teobaldo, a pensar seu contexto social. Mas, além disto, como veremos em breve, é possível calcular um amplo rol de métricas relacionadas à rede como um todo e a cada um dos nós, além de avançar a visualização com ainda mais elementos que ajudem a gerar informação e/ou enfatizar quais dados queremos destacar.

Historicamente, a análise de redes sociais esteve associada à perspectivas de pesquisa microssociológica, tanto devido à sua natureza – análise das interações entre atores sociais específicos – quanto à restrições relacionadas à coleta e processamento de dados. Seja através de questionários, entrevistas ou observação, reunir dados relacionais sempre foi uma tarefa muito difícil. E, sem as capacidades computacionais de hoje, calcular as métricas relacionadas era um trabalho hercúleo. Abaixo, um exemplo de uma rede de um estudo de Jacob Moreno, pesquisador que popularizou a sociometria na década de 1950, uma metodologia em psicologia que envolve análise de redes sociais:

Porém, com o advento e popularização das tecnologias digitais de comunicação, isto mudou. A quantidade de dados relacionais disponíveis aos pesquisadores acadêmicos e de mercado aumentou imensamente. Tanto um volume enorme de interações passou a estar disponível e armazenado para análise quanto desenvolvimentos técnicos (banco de dados e APIs) passaram a permitir o planejamento desta coleta e posterior processamento. O gráfico abaixo, por exemplo, é uma rede conversacional em torno do termo “healthcare” (assistência médica) coletada em apenas um dia no Twitter, com mais de 1141 nós e 6025 arestas.

Ainda vale a pena destacar que a análise de redes sociais, especialmente hoje em dia, tanto pode levar em conta a estrutura quanto suas dinâmicas.

“O cerne da questão é que, no passado, redes foram vista como objetos de estrutura pura, cujas propriedades são fixas no tempo.” Porém, como o autor explica, “redes reais representam populações de componentes individuais que estão fazendo algo na realidade – gerando energia, enviando dados ou até tomando decisões” (WATTS, 2003, p.11).

Por isto, é importante deixar claro aqui que, apesar de estarmos por enquanto focando aqui no termo “análise estrutural de redes sociais” vamos falar de forma ampla da relação viva entre estruturas e suas dinâmicas. Abaixo um exemplo de visualização das flutuações temporais da intensidade (medida, neste caso, por frequência de interlocução) de interações entre personagens do seriado Lost, que podem ser vistas no projeto Lostalgic.

Os pesquisadores que aplicam estes tipos de estudos na web, como Raquel Recuero, explicam muito bem esta relação entre estrutura e dinâmica. Em seu último livro, declara que “proporemos aqui alguns elementos diferenciais [em relação à perspectivas anteriores], como o estudo da dinâmica dessas redes, além de sua composição. Essa abordagem tem, assim, um forte viés empírico de estudo, com um expressivo foco na análise desses dados.” (FRAGOSO, RECUERO e AMARAL, 2011, p.115).

Então um dos objetivos que vamos perseguir aqui é mostrar como realizar estes estudos empíricos a partir das redes que podem ser coletadas, pois, como vimos, identificar e analisar redes pode gerar muitas informações sobre o que está sendo pesquisado. Nas próximas postagens, falaremos da história da análise de redes sociais, de alguns experimentos bem emblemáticos sobre as redes sociais e sobre os principais elementos envolvidos na análise estrutural de redes sociais: as próprias redes, suas arestas e nós.

Referências Bibliográficas

BARABÁSI, Albert-László. Linked: The New Science of Networks. Cambridge (EUA): Perseus Publishing, 2002. [compre]
BUCHANAN, Mark. Nexus. São Paulo: Leopardo, 2009. [compre]

FRAGOSO, Suely; RECUERO, Raquel; AMARAL, Adriana. Métodos de Pesquisa para Internet. Porto Alegre: Sulina, 2011. [compre]
HANSEN, Derek; SHNEIDERMAN, Ben; SMITH, Marc. Analyzing Social Media Networks with NodeXL. Burlington: Morgan Kaufamman, 2011. [compre]
LEMIEUX, Vincent; OUIMET; Mathieu. Análise Estrutural de Redes Sociais. Lisboa: Instituto Piaget, 2004. [compre]
MORENO, Jacob. Who Shall Survive? Foundations of Sociometry, Group Psychotherapy and Sociodrama. New York: Beacon House Inc, 1978.

WATTS, Duncan J. Seis Graus de Separação: a evolução da ciência de redes em uma era conectada. São Paulo: Leopardo, 2009. [compre]

Pontos, Linhas e Métricas #01: redes sociais

[O texto a seguir faz parte de uma série que pode ser visualizada em “Pontos, Linhas e Métricas: introdução à análise estrutural de redes sociais”]

Redes Sociais

Em primeiro lugar, devemos voltar à velha querela. Por mais que se conteste, brigue ou corrija, o mercado continuará chamando sites como Orkut, Twitter e Facebook de “redes sociais”, apenas. Apesar da contestação sobre a precisão desta definição, é consenso de que a grande maioria destes sites permite a criação e articulação de redes sociais. Voltando, mais uma vez, à já clássica definição de sites de redes sociais, descrevo aqui como danah boyd e Nicole Ellison os caracterizam:

“serviços de web que permitem aos usuários (1) construir um perfil público ou semipúblico dentro de um sistema conectado, (2) articular uma lista de outros usuários com os quais eles compartilham uma conexão e (3) ver e mover-se pela sua lista de conexões e pela dos outros usuários (BOYD e ELLISON, 2008. p.211).”

Nesta definição estão em jogo três pontos essenciais. Em primeiro lugar, nos sites de redes sociais temos uma “apresentação” de nós. O “perfil” em cada site de rede social é voltado a ser uma representação do ator social por trás dele. Por isso, temos a possibilidade de disponibilizar uma ampla quantidade de informações sobre nós mesmos: informações demográficas, preferências culturais, auto-descrições etc.

Em segundo lugar, esta apresentação de nós, que muitos chamariam de nossos “eus virtuais”, pode se conectar à outras páginas – perfis -, que representam outras pessoas com as quais queremos trocar algum tipo de informação ou, simplesmente, marcar que possuímos algum tipo de relação, seja presencial, online, ambas ou só em potencial.

Por fim, o terceiro ponto se refere a esta lista de conexões: na grande maioria dos casos, é possível ver detalhadamente sua lista de conexões/amigos e a dos outros usuários, especialmente aqueles que você já possui uma conexão.

Desse modo, os “sites de redes sociais” podem ser vistos de fato como agregadores de redes sociais na medida em que permite que pessoas reais criem suas representações ali e se conectem a outras pessoas.

mídias sociais, o termo que é até mais utilizado em determinados âmbitos, se refere de modo geral aos ambientes que permitem que a “mídia” – a informação que é lida, manipulada e consumida – seja produzida de forma social. Apesar das críticas a este termo, é uma expressão que permite englobar uma variedade ampla de sites e serviços online que cresceram em número e intensidade de uso nos últimos dez anos.

Gosto sempre de citar um artigo de David Beer (2008), crítica ao trabalho de danah boyd e Nicole Ellison, que faz uma diferenciação entre social network sites e social networking sites. A desinência verbal na segunda definição seria mais próxima do que estamos chamando aqui de sites de redes sociais (social networking sites), enquanto o termo com a palavra “network” como substantivo seria para o que estamos chamando aqui de mídias sociais. Ou seja, sites como Facebook e Orkut mereceriam o termo social networking sites, por enfatizarem o estabelecimento de relações sociais. Já sites como YouTube e Wikipédia, que possuem outros focos, deveriam ser chamados, para Beer, de social network sites pois, apesar de possuírem estrutura de rede, o foco está nos conteúdos ou outras áreas e não nas pessoas em si.

É possível ver o termo “mídias sociais” como uma das principais manifestações da chamada web 2.0, termo em desuso mas que permitiu pensar de modo bem loquaz as transformações do comportamento das pessoas na web.

A web 2.0 seria caracterizada por alguns traços identificados por O’Reilly (2005) e descritos magistralmente por Cobo Romaní e Pardo Kuklinski no livro “Planeta Web 2.0.”. As noções básicas sobre a web 2.0 seriam: a world wide web como plataforma; aproveitamento da inteligência coletiva; gestão da base de dados; fim do ciclo de atualização de softwares; modelos de programação ligeira; softwares não limitados apenas a um dispositivo (ROMANI e KUKLINSKI, 2007). Quando se analisa os sites mais utilizados hoje, como os sites de redes sociais como Facebook e outras mídias sociais como YouTube e Wikipedia, se percebe que todas estas características hoje são praticamente ubíquas.

Como bem explicam Romaní e Kuklinski,

“o termo Web 2.0 é mais um dos conceitos em um cenário de obsolescência terminológica planificada. Porém, a virtude dessa noção, e com certeza o texto fundamental de O’Reilly, é sua capacidade de descrever com precisão e síntese um tipo de tecnologia e seus produtos derivados” (ROMANÍ e KUKLINSKI, 2007, p.15).

Porém, voltando ao principal do que queremos falar, o que se entender por “rede social” é uma:

“estrutura social composta de indivíduos (ou organizações) chamados de “nós”, que são ligados (conectados) por um ou mais tipos de interdependência, como amizade, parentesco, interesse comum, trocas financeiras, aversões, relacionamentos sexuais ou relacionamentos de crença, conhecimento ou prestígio” (PASSMORE, 2011)

Sim, aquela frase  que está em 90% das palestras de mercado sobre mídias sociais (alguma variante de “redes sociais existem desde sempre”) é verdade, apesar de ser pouco lembrada. A representação de uma rede social – que pode ser uma rede de pessoas conversando, uma rede de amigos, uma lista de seguidores de um perfil ou fãs de uma página pode ser das mais simples às mais complexas. Abaixo um exemplo de uma rede hipotética dos “melhores amigos” de Teobaldo, o personagem que vai nos acompanhar nesta série. Apenas nesta minúscula rede abaixo é possível extrair alguns dados, que viram informações relevantes quando se adiciona contexto. Em breve, veremos como fazer isto.

Mas, apesar de existirem desde que o homem existe (ou antes, uma vez que alguns animais apresentam estruturas sociais complexas), as dinâmicas e estruturas de redes sociais nem sempre foram observadas com a merecida atenção.

A internet e a capacidade de processamento computacional vieram dar novo fôlego à essa ciência (análise de redes sociais) nos últimos anos, como explica Recuero:

é o surgimento dessa possibilidade de estudo das interações e conversações através dos rastros deixados na Internet que dá novo fôlego à perspectiva de estudo de redes sociais a partir do início da década de 90. É, neste âmbito, que a rede como metáfora estrutural para a compreensão dos grupos expressos na Internet é utilizada através da perspectiva de rede social (RECUERO, 2009, p.24).

Então vamos, sucintamente, seguir o padrão: redes sociais são redes de pessoas e/ou suas representações, independente de onde sejam; sites de redes sociais são aqueles sites que se focam nas interações entre os nós/perfis e na estrutura de redes; e mídias sociais são ambientes digitais (hoje praticamente todos entre os mais populares) que se baseiam na inteligência coletiva e conteúdo gerado pelo usuário. O clássico “Prisma da Conversação”, do Brian Solis, mostra a diversidade de possibilidades existentes das mídias sociais:

Quando se fala de “análise de mídias sociais”, na verdade pode-se retirar do termo o uso amplo que é feito incluindo gestão e conteúdo. Quando se pensa em análise de mídias sociais, deveríamos estar falando do próprio trabalho de análise. Ou seja, o escopo é enorme e multidisciplinar: análise de performance, netnografia, análise textual, inteligência de mercado, percepção de marcas, monitoramento de mídias sociais, “análise de buzz”… são muitas disciplinas e termos utilizados. Agora vamos então começar a falar da análise estrutural, uma destas disciplinas: afinal de contas, o que é? Veja nos próximos posts da série a definição da área, seus principais elementos e alguns casos clássicos.

Referências Bibliográficas

BEER, D. Social network(ing) sites…revisiting the story so far: A response to danah boyd & Nicole Ellison. Journal of Computer-Mediated Communication, 13 (2), article 8, 2008.

BOYD, D. M;, ELLISON, N. B. Social network sites: Definition, history, and scholarship. Journal of Computer-Mediated Communication, 13(1), article 11, 2008.

O’REILLY, Timothy. What Is Web 2.0: Design Patterns and Business Models for the Next Generation of Software. 2005. Disponível em: http://oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

PASSMORE, David. Social Network Analysis – Theory and Applications. Online, 2011.

RECUERO, Raquel. Redes Sociais na Internet. Porto Alegre: Sulina, 2009.

ROMANÍ, Cristóbal C.; KUKLINSKI, Hugo P. Planeta Web 2.0: Inteligencia colectiva o medios fast food. México: 2007. Disponível em: <http://www.planetaWeb2.net/>.

 

moviegalaxies: Análise Estrutural de Redes Sociais de Filmes

O fabulosíssimo projeto de pesquisa de Jermain Kaminski e Michael Schober é resumido no artigo Social Networks in Movies. Segue o abstract:

Although humanities and cultural studies have a long tradition in formalistic interpretations of works of art and literature (e. g. Wellek and Warren, 1956), only few writers have understood these works as networks of characters that (inter)act with each other. This paper expands this stream of thought by extracting, visualizing and analyzing the evolution of the characters’ interaction networks in about 797 movies from 1915 to 2011 and teasers a collobarative online solution of the technique, which is crowdsourcing the further development. There are only a very few examples of research where the social network of movies has ever been analyzed. These studies mostly had a low scale (n=1) and were not automated with machine learning algorithms (e.g. Hillman, 2011; Park et al., 2011; Ding and Yilmaz, 2010). Looking at the amount of analyzed movies and technique, this paper is a new approach.

Além de apresentar esta interessante perspectiva na interpretação de obras artísticas, os autores lançaram o site moviegalaxies, que apresenta as redes sociais de personagens de filmes. As quase 800 redes podem ser visualizadas de forma interativa, com os agrupamentos, métricas de grau, intermediaridade e cluster. Abaixo alguns exemplos de redes: Magnolia (diversos grupos, resultado das diversas linhas narrativas), Solaris (rede pequena e densa do sci fi claustrofóbico, que se passa em uma nave espacial), e Fight Club (rede altamente centralizada em Jack, protagonista narrador em primeira pessoa).

Magnolia

Solaris

 

Fight Club