Hipersegmentações de Publicidade na Era Algorítmica: desafio ético para as organizações

A plataformização da web é uma das principais preocupações de alguns pesquisadores e ativistas em torno do mundo. Rapidamente a empolgação recente de pesquisadores de diversas vertentes já parece datada. A crença de que “os meios tradicionais de comunicação passaram a perder espaço para essa nova modalidade intercomunicativa, operacionalizada não mais por proprietários de veículos de comunicação, mas por cidadãos comuns” (MAZZUOLI, p.229) é parcialmente correta, mas fica claro que novas hierarquias foram construídas entre numeratis, indivíduos com uma capacidade maior de análise de dados através de lógicas computacionais (BAKER, 2009).

A internet e as mídias sociais trazem dados sobre aspectos demográficos, sociais e comportamentais dos indivíduos com volume e visibilidade de um modo anteriormente pouco imaginado até na ficção científica. Entretanto, para acessar, processar, visualizar e agir sobre estes dados, são necessárias capacitações tradicionalmente associadas a formações das áreas de Computação, Engenharia, Estatística e Matemática. Em sua maioria, cursos que formam profissionais com pouca ou nenhuma carga de humanidades e ciências sociais, infelizmente. Um dos numerati do Vale do Silício é Christian Rudder, graduado em Matemática e fundador da OkCupid, site de relacionamentos inaugurado em 2004. Rudder publicou em 2014 o livro Dataclysm: Who We Are When We Think No One’s Looking, traduzido para o português no mesmo ano.

A publicação é uma ode ao big data e análise de dados não obstrusivos armazenados sobre indivíduos em seus usos cotidianos de plataformas, websites e apps dos mais diferentes tipos. Além da proeza computacional de processamento e análise de dados de milhões de pessoas, os resultados do livro são um alerta importante: trilhões de pontos de dados sobre relacionamentos, preferências afetivas e sexuais estão disponíveis apenas para um punhado de pessoas, que detêm ou trabalham em departamentos de pesquisa de plataformas como a OkCupid. São dados fechados que apenas o próprio Rudder poderia ter acesso: o livro se baseia em dados proprietários tratados por um matemático empreendedor que deixa diversos padrões científicos e trabalho crítico sobre as informações levantadas de lado. Nenhum pesquisador acadêmico teve ou poderia ter acesso a estes dados brutos.

Assim, mesmo os pesquisadores acadêmicos de ponta criando projetos e visualização na interseção entre sociologia, filosofia e tecnologia digital estão em desvantagem. Em importante artigo sobre métodos quali-quantitativos para estudar traços digitais, Tommaso Venturini e Bruno Latour dizem que “digital mediation spreads out like a giant roll of carbon paper offering the social more data than they ever dreamt of” (VENTURINI & LATOUR, 2010, p.9). A rigor, a mediação digital oferece de fato mais dados do que jamais imaginado, mas crescentemente são concentrados de forma extrema nas bases de dados e grupo de cientistas de empresas como Facebook, Google, Amazon, Apple e Twitter.


Recomendo o trabalho de Scott Galloway e seu livro The Four sobre o tema da concentração de valor, comunicação e poder em Google, Facebook, Apple e Amazon


O conceito de Noortje Marres de “redistribuição dos métodos” é loquaz para este problema. Ao tratar do avanço de empresas comerciais de comunicação no entendimento da sociedade, Marres (2012) explica como isto interfere na relação entre sociedade, mercado, estado e academia. Os exemplos são inúmeros. Mais ainda do que o caso citado anteriormente sobre a OkCupid, empresas como Facebook mantêm departamentos de pesquisa que investigaram temas como: graus de separação entre indivíduos (BACKSTROM et al, 2012); polarização política (BASHKY et al, 2015);  e até mesmo os laços fortalecidos entre amigos de pessoas recém-falecidas (HOBBS & BURKE, 2017). Entretanto, dois casos receberam mais destaque por serem experimentais e intervenientes na realidade: interferência na probabilidade de levar americanos a votar nas eleições; e contágio emocional, alcançado através de ajustes nos algoritmos de forma não-declarada, modificando artificialmente estado emocional de mais de 680 mil pessoas no Facebook (KRAMER et al., 2014).

 

Polêmica recente na esfera político-eleitoral também tem levado representantes das plataformas ao Congresso americano. Ganha destaque sobretudo o uso do sistema de anúncios para distribuir notícias falsas a segmentos hiper-personalizados de eleitores nos EUA, para promover votos em determinados candidatos ou, mesmo, desmotivar qualquer voto de eleitores pouco prováveis[1].


Sobre o tema, o trabalho da Zeynep Tufekci pode ser resumido no TED acima. Traduzi a transcrição aqui no blog.


E quanto às organizações do setor privado, quais impactos e decisões devem ser consideradas? Como as organizações tem lidado com questões éticas sobre uso de plataformas de anúncios hiperssegmentados, automatizáveis e programáticos?

A oferta de sistemas de anúncios hiperssegmentados cresceu de forma incontrolável nos últimos 10 anos graças ao uso intenso de mídias sociais e promoção de visibilidade de características demográficas, preferências culturais e comportamentais. O sistema do Facebook, por exemplo, permite criar anúncios direcionados a pessoas através de: variáveis demográficas clássicas – como idade, gênero, localização; renda e profissões; preferências culturais quanto a músicas, artistas, literatura, extraídas de likes; tipologias de fases da vida e eventos, como divórcio recente, novo emprego, relacionamento à distância; composição familiar; e combinações de todas estas variáveis e muitas outras.

O uso destas segmentações está há poucos cliques de qualquer pessoa ou empresa. No modelo self service basta um cartão de crédito e um anúncio pode ser criado em pouquíssimos minutos. O ecossistema de atores do mercado de audiência e suas divisões claras entre os atores componentes, a saber: Organizações de Mídia; Anunciantes; Agências; Empresas de Mensuração; e Consumidores (NAPOLI, 2003). Esta indefinição de papéis associada a aceleração das decisões em um ambiente veloz e competitivo, mudando, como explica como explica Bueno, “vem alterando drasticamente o perfil tradicional das organizações empresariais. Sobretudo, tem provocado uma mudança profunda no relacionamento entre as corporações e os seus distintos públicos de interesse” (BUENO, 2000, p.50).

O papel das escolhas conscientes de corporações no uso de anúncios online é questionado em casos como o descoberto por pesquisadores que avaliaram diferenças entre anúncios voltados a homens e mulheres no Google. Ao construir um sistema automatizado de coleta de anúncios, que fingia ao sistema do Google ser diferentes homens e mulheres, os pesquisadores compararam o conteúdo patrocinado. Como principal resultado, perceberam que homens recebem muito mais anúncios de vagas de trabalho e serviços de coaching ligados a posições de maior remuneração e prestígio do que mulheres (DATTA, TSCHANTZ & DATTA, 2015). Em reportagem publicada no The Guardian[2], Samuel Gibbs explica que “profiling is inherently discriminatory, as it attempts to treat people differently based on their behaviour and personal information. While that customisation can be useful, showing more relevant ads to users, it can also have negative connotations”.

Não só pesquisadores estão acompanhando onde e como as organizações publicam mensagens e anúncios, mas também ativistas. O grupo Sleeping Giants[3] tem como objetivo “stop racist and sexist media by stopping its ads dollars. Many companies don’t even know it’s happening. It’s time to tell them”. A tática é simples e efetiva: os administradores do perfil e colaboradores podem flagrar anúncio de alguma empresa em sites de fake news de extrema-direta como o Breitbart, tirar print do anúncio e informar, geralmente através de um tweet, que o anúncio está sendo veiculado no site – ou seja, financiado as práticas nocivas e antidemocráticas.

Centenas de empresas responderam alegando não saber que seus anúncios estavam sendo veiculados naqueles sites. Possivelmente é verdade: sistemas de compra de anúncio online oferecem diferentes opções de segmentação para toda a rede de sites cadastrados e a inclusão ou exclusão de websites específicos é um processo manual raramente feito. A Sleeping Giants ainda ensina as empresas e agências dispostas a como retirar os sites das campanhas, diminuindo suas receitas possíveis.

Neste panorama complexo, ainda não há uma clara definição, regulamentação ou auto-regulamentação das grandes empresas sobre como agir quanto a práticas nocivas de uso de algoritmos e automatização nas plataformas de mídia online. O recente trabalho de Wilson (2017) é um dos poucos que problematiza o tema incluindo empresas comerciais, e não apenas governos ou instituições públicas. Quanto a governo, propõe a importância de marcos regulatórios e iniciativas como as pressões da União Européia para declaração de direitos civis sobre os dados, além de promover a pesquisa científica independente sobre inteligência artificial, automação e algoritmos.

No caso de empresas comerciais, reconhece que o grande desafio é que a maximização de lucros afeta as decisões tomadas por órgãos diretivos e departamentos de marketing, mas a atuação ética deve ser buscada. Explicitar o uso de inteligência artificial em mecanismos de interação (como bots e chatbots) é outro terreno que não está definido e práticas devem ser mapeadas. Quanto às próprias plataformas, o desenvolvimento de mecanismos de customização das mensagens recebidas (como opt out de recebimento de anúncios de determinadas empresas) já existe parcialmente e pode ser melhorado.

Adicionamos ainda a importância da compreensão abrangente e distribuída sobre os impactos das tecnologias digitais em tempos de incerteza. As organizações podem e devem incluir em seus planos de formação interna e endomarketing soluções que envolvam também a criação de consciência sobre os impactos das pequenas decisões tomadas na gestão de mídia e comunicação online. Poucos cliques podem ser a diferença entre uma gestão responsável e uma gestão suscetível a crises estrondosas.

 

Referências Bibliográficas

BACKSTROM, Lars et al. Four degrees of separation. In: Proceedings of the 4th Annual ACM Web Science Conference. ACM, 2012. p. 33-42.

BAKER, Stephen. Numerati–Conheça os Numerati. Eles já conhecem você. São Paulo: Saraiva, 2009.

BAKSHY, Eytan; MESSING, Solomon; ADAMIC, Lada A. Exposure to ideologically diverse news and opinion on Facebook. Science, v. 348, n. 6239, p. 1130-1132, 2015.

BUENO, Wilson da Costa. A Comunicação como espelho das culturas empresariais. Comunicação & Inovação, v. 1, n. 1, 2000.

DATTA, Amit; TSCHANTZ, Michael Carl; DATTA, Anupam. Automated experiments on ad privacy settings. Proceedings on Privacy Enhancing Technologies, v. 2015, n. 1, p. 92-112, 2015.

KOSINSKI, Michal; STILLWELL, David; GRAEPEL, Thore. Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, v. 110, n. 15, p. 5802-5805, 2013.

KRAMER, Adam DI; GUILLORY, Jamie E.; HANCOCK, Jeffrey T. Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences, v. 111, n. 24, p. 8788-8790, 2014.

NAPOLI, Philip M. Audience economics: Media institutions and the audience marketplace. Columbia University Press, 2003.

TUFEKCI, Zeynep. We’re building a dystopia just to make people click on ads. TED. Ideas worth preading. Vídeo e transcrição de palestra. Disponível em https://www.ted.com/talks/zeynep_tufekci_we_re_building_a_dystopia_just_to_make_people_click_on_ads/transcript

WILSON, Dennis G. The Ethics of Automated Behavioral Microtargeting. AI Matters, vol. 3, n.3, 2017.

[1] https://www.theverge.com/2016/10/27/13434246/donald-trump-targeted-dark-facebook-ads-black-voters

[2] https://www.theguardian.com/technology/2015/jul/08/women-less-likely-ads-high-paid-jobs-google-study

[3] https://twitter.com/slpng_giants

 

Como Citar

SILVA, Tarcízio. Hipersegmentações de Publicidade na Era Algorítmica: desafio ético para as organizações. Online, 2017. Acesso em: XX/XX/XXXX. Disponível em: < http://tarciziosilva.com.br/blog/hipersegmentacoes-de-publicidade-na-era-algoritmica-desafio-etico-para-as-organizacoes >

Diversidade na publicidade da Skol: Reposter e Skolors pela ótica da análise do discurso

A revista acdêmica Tríade, do Programa de Pós-graduação em Comunicação e Cultura da Universidade de Sorocaba,  acaba de lançar edição com dossiê sobre Diversidade Cultural/Sexual e de Gênero. O dossiê inclui treze artigos sobre temas relacionados, incluindo publicação minha em parceria com a profª Elizabeth Gonçalves:

Diversidade de corpos na publicidade: o contexto interpretativo nas campanhas Skolors e Reposter da Skol no Facebook

Historicamente, a publicidade de cerveja tem explorado de forma estereotipada o corpo feminino e ignorando etnias, cores e formas fora do padrão hegemônico. Porém, está em curso um movimento de buscar uma ressignificação dos corpos como estratégias publicitárias. O artigo explora o uso de comentários na plataforma Facebook como insumos para investigação de  contexto  interpretativo  previsto  e  reapropriado  por  enunciadores corporativos pautados pelo dialogismo pressuposto nas mídias sociais. Como estudo de caso, cruzamos o debate discursivo quanto à representação dos  corpos  na  publicidade  através  da  tentativa  de  reposicionamento  do imaginário em torno das campanhas da Skol: Reposter e Skolors. A partir da extração de dados (37 mil comentários e 17 mil respostas, assim como suas métricas) em postagens de campanha na página oficial da marca, o texto se debruça sobre os comentários de maior repercussão e as decorrentes respostas para discorrer sobre as táticas discursivas da empresa. O estudo também  sublinha  como  o  ambiente  on  line  propicia  elementos  para  ser explorado  tanto  comercialmente  quanto  nas  pesquisas  acadêmicas  no âmbito da Comunicação, trazendo insumos contextuais para a interpretação de sinais explícitos de recepção do público.

 

Mercado de inteligência em mídias sociais valoriza conhecimento científico

Vamos estudar? Ao contrário do que se diz em alguns meios publicitários, a universidade dá o tom da evolução do mercado da Comunicação em diversas esferas, sobretudo quando tratamos de mídias sociais. Um dos exemplos mais pujantes disto está nas disciplinas e ferramentas ligadas a análise de redes e grafos com dados de mídias sociais, que há mais de 10 anos são intensas na academia, enquanto no mercado evoluiu nos últimos 3 anos apenas [leia mais]. Os resultados da pesquisa “O Profissional de Inteligência de Mídias Sociais” deste ano reforçam ainda mais esta importância.

Como falo desde a pesquisa de 2014,  o “mercado” quer aplicações inovadoras e recompensa os profissionais que as fazem, mas escondendo (ou ignorando) que esta qualidade existe devido ao uso de conhecimento acadêmico por profissionais que conseguem fazer esta ponte.

Por este e diversos outros motivos é importante que o mercado motive e faça sua parte para consultar e incentivar (por meio de bolsas, parcerias, financiamentos etc) a aplicação do conhecimento. A academia está fazendo sua parte gerando conhecimento e formando pessoas de forma ética e responsável, então é papel do mercado fazer a aproximação se deseja transformar parte deste conhecimento para aplicações para si. Em um país no qual apenas 14% das pessoas se formam no ensino superior, é prerrogativa de qualquer indivíduo responsável motivar o conhecimento acadêmico.

No resultado da pesquisa deste ano, a tendência se fortalece ainda mais. Entre as referências profissionais mais admiradas, 70% são mestres e 50% doutores ou doutorandos. Professores universitários dedicados a pesquisa estão presentes, devido ao impacto de formação e inovação tecnológica. Entre os livros mais usados, a maioria são de publicações focadas na área e bem estruturados. Mas infelizmente o escasso hábito de leitura do brasileiro se destaca: 76% dos respondentes não recomendou nenhum livro. Ou seja, não é falta de produção, é falta de hábito.

Além disto, a ótima performance do IBPAD – Instituto Brasileiro de Pesquisa e Análise de Dados, com apenas 2 anos de atuação, é resultado também desta postura de conectividade com o conhecimento acadêmico. Nós transformamos conhecimento e rigor científico em aplicações diversas para metodologias de pesquisa.

Vamos avançar pra enfrentar esta crise e continuar a avançar nossos profissionais? Leia a pesquisa completa no SlideShare e vamos arregaçar as mangas!

Como estudar audiências televisivas com as mídias sociais?

Em outubro aconteceu na Universidade Federal Fluminense o I Congresso TeleVisões, que reuniu centenas de pesquisadores que estudam narrativas seriadas como novelas e séries, representações e identidade nos produtos, novas mídias, convergência, mercado televisivo, mídias sociais, fãs, cultura sonora e outras temáticas relevantes.

Eu e Eloy Vieira, pesquisador doutorando na Unisinos, submetemos ao evento artigo que apresenta metodologia para o estudo de fãs no Twitter, com aplicações possíveis a diversos tipos de públicos e audiências. Depois da contextualização dos estudos sobre fãs nas mídias sociais, propomos 4 etapas (entrada, planejamento, análise e apresentação) que vão da imersão no tema e escolha inteligente de keywords e modos de observação até a construção de personas e visualização de resultados.

O artigo chama-se “Fãs, Consumo Cultural e Segunda Tela: proposições metodológicas acerca das audiências no Twitter

Resumo: O presente artigo organiza procedimentos metodológicos para o estudo de hábitos e características comportamentais de fãs imersos no fenômeno da segunda tela. Para isso, partimos do conceito de cultura da convergência, que engendrou estudos de comunidades de fãs (JENKINS, 2009) e então apresentamos uma proposta que visa compreender as imbricações entre fãs e segunda tela no Twitter a fim de atender demandas acadêmicas e mercadológicas acerca deste assunto. A proposta é construída a partir da coleta de dados baseadas em um arranjo quali-quantitativo de Análise de Redes Sociais e prevê quatro fases: Planejamento, Entrada, Análise e Apresentação.
 Clique para acessar o artigo completo:

“Estamos criando uma distopia apenas para que pessoas cliquem em anúncios” – @zeynep

Zeynep Tufekci (@zeynep) é uma das pesquisadoras mais importantes da atualidade. Turca, ensina e pesquisa na University of North Carolina, escreve no New York Times e é autora de artigos como “Can you see me now? Audience and disclosure regulation in online social network sites“; “Big Questions for Social Media Big Data: Representativeness, Validity and Other Methodological Pitfalls“; “Social Media and the Decision to Participate in Political Protest: Observations From Tahrir Square” e o fantástico livro recém-lançado “Twitter and Tear Gas:   The Power and Fragility of Networked Protest“.

Em setembro realizou mais uma palestra TED em Nova Iorque com o título “Estamos criando uma distopia apenas para pessoas clicarem em anúncios” (“We’re building a dystopia only just to make people click on ads”). Já falamos de alguns temas mencionados aqui no blog ou do IBPAD, mas a narrativa é sensacional e um resumo exemplar de um dos temas mais importantes da atualidade, então traduzi a transcrição em seguida. Veja abaixo:

 

Quando as pessoas falam de receios sobre inteligência artificial, geralmente, evocam imagens de robôs humanóides correndo descontrolados. Sabe como é? Como Exterminador do Futuro? Assim, isto é algo que pode ser considerado, mas é uma ameaça distante. Ou, nós nos preocupamos sobre vigilância digital com metáforas do passado. “1984”, o livro de George Orwell, está voltando para as prateleiras de best sellers. É um ótimo livro, mas não é a distopia correta para o século 21. O que precisamos temer de fato não é o que a inteligência artificial fará a nós sozinha, mas como as pessoas no poder usarão a inteligência artificial para nos controlar e nos manipular de novas, sutis e inesperadas maneiras, muitas vezes ocultas. Boa parte da tecnologia que ameaça nossa liberdade e dignidade em um futuro próximo está sendo desenvolvida por empresas do mercado de captar e vender nossos dados e atenção para publicitários e outros: Facebook, Google, Amazon, Alibaba, Tencent.

Hoje, a inteligência artificial começou a reforçar seus negócios também. E pode parecer que a inteligência artificial é a grande coisa logo depois dos anúncios online. Não é. É um salto em categoria. É um mundo totalmente diferente e tem grande potencial. Pode acelerar nosso entendimento em várias áreas de estudo e pesquisa. Mas para citar um famoso filósofo de Hollywood, “Enormes potenciais trazem enormes riscos”.

Agora vamos olhar para um fato básico nas nossas vidas digitals, os anúncios online. Certo? De certa forma nós os ignoramos. Achamos que são rudimentares, pouco efetivos. Todos nós já tivemos a experiência de ser seguido na web por um anúncio baseado em algo que buscamos ou lemos. Você sabe, quando você procura um par de botas e por uma semana, estas botas seguem você em todo o lugar que você vai. Mesmo depois que você se rende e as compra, elas continuam seguindo você. Estamos acostumados com esse tipo básico e simples de manipulação. Reviramos os olhos e pensamos “Quer saber? Estas coisas não funcionam”. Mas, online, as tecnologias digitais não são só anúncios. Agora, para entender isto, vamos pensar em um exemplo do mundo físico. Você sabe como, nas filas perto de caixas de supermercado, tem doces e balas no nível do olhar das crianças? Isto é pensado para fazê-las importunar os pais no momento da compra. É uma arquitetura de persuasão. Não é legal, mas funciona. É por isto que você a vê em todos os supermercados. Agora, no mundo físico, esta arquitetura de persuasão é relativamente limitada, pois você não pode colocar tudo perto dos caixas. Certo? E os doces e balas são os mesmos para todo mundo, mesmo que alguns só funcionem para quem tiver pequenos humanos chorando por perto. No mundo físico, convivemos com estas limitações.

No mundo digital, porém, arquiteturas de persuasão podem ser construídas na escala de bilhões [ver postagem relacionada] e podem direcionar, inferir, entender e entregues a indivíduos um a um ao descobrir suas fraquezas. E podem ser enviados para as telas de smartphones de cada um, então não são visíveis aos demais. Isto é diferente. E é apenas uma das coisas simples que a inteligência artificial pode fazer.

Vamos pensar em outro exemplo. Digamos que você vende passagens de avião para Vegas, ok? Então, no mundo antigo, você pode pensar em algumas características demográficas baseadas em experiência e no que você pode supor. Você pode tentar anunciar para, digamos, homens entre 25 e 25 ou pessoas que tem um limite muito alto em seus cartões de crédito, ou casais aposentados. Certo? É o que você pode fazer no passado.

Com big data e aprendizado de máquina (machine learning), não é como você faria mais. Então imagine isto, pense em todos os dados que o Facebook tem sobre você: cada post que já digitou, cada conversa no Messenger, cada lugar que você logou, todas suas fotografias que enviou. Se você começar a digitar algo, mudar de ideia e deletar sem psotar, o Facebook mantêm e analisa isto também. Crescentemente, tenta combinar com dados offline. Também compra muitos dados de data brojers. Pode ser qualquer coisa dos seus registros financeiros a histórico de navegação. Nos EUA, estes dados são rotineiramente coletados, agrupados e vendidos. Na Europa, as regras saõ mais rígidas.

Então o que acontece é que, ao combinar e espremer todos estes dados, os algoritmos de machine-learning – é por isto que são chamados de algoritmos de aprendizado – aprendem a entender características de pessoas que compraram tickets para Vegas. Quando aprendem isto dos dados existentes, também aprendem como aplicar a novas pessoas. Então se eles são apresentados a uma nova pessoa, podem classificar se esta pessoa tende a comprar um ticket para Vegas ou não. Mas tudo bem. Você deve estar pensando, uma oferta para comprar passagens para Vegas. Posso ignorar isto. Mas o problema não é este. O problema é que não entendemos mais realmente como estes complexos algoritmos funcionam. Não entendemos como fazem esta categorização. São matrizes gigantes, milhares de colunas e linhas, talvez milhões de colunas e linhas, e nem os programadores ou qualquer pessoa que olha para estes dados, mesmo que tenha todos os dados, entende mais exatamente como estão operando mais do que se você olhasse agora um corte do meu cérebro. É como se não estivéssemos mais programando, estamos alimentando inteligência que não entendemos realmente.

Todas estas coisas funcionam se há quantidade enorme de dados, então eles encoragem profunda vigilância de todos nós para que os algoritmos de machine learning possam trabalhar. É por isto que o Facebook quer coletar todos os dados sobre você que puder. Os algoritmos trabalharão melhor.

Então vamos forçar mais umpouco este exemplo sobre Vegas. E se o sistema que não entendemos descobre que é mais fácil vender passagens para Vegas a pessoas que são bipolares e estão prestes a entregar na fase maníaca. Estas pessoas tendem a se tornar gastadoras, jogadoras compulsivas. Eles podem fazer isto e você não teria ideia de que são estas variáveis escolhidas. Dei este exemplo a um grupo de cientistas da computação uma vez e, depois, um deles veio a mim. Ele estava desconcertado e falou “É por isto que não posso publicar”. E eu perguntei “Não pode publicar o quê?”. Ele tentou avaliar se poderia prever o início da crise maníaca a partir dos posts em mídias sociais antes dos sintomas clínicos. E funcionou, e funcionou muito bem, e ele não fazia ideia de como funcionou.

Agora, o problema não é resolvido se ele publica ou não, porque há outras empresas desenvolvendo este tipo de tecnologia, e boa parte dos recursos está disponível. Não é mais difícil.

Você já foi ao YouTube para ver apenas um vídeo e uma hora depois você percebeu que viu 27? Você sabe como o YouTube tem esta coluna na direita que diz “Up next” e toca automaticamente algo? É um algoritmo escolhendo o que acha que você pode estar interessado e talvez não encontre sozinho. Não é um editor humano. É isto que algoritmos fazem. Eles escolhem o que você viu e o que pessoas como você assistiram e inferem o que você pode estar interessado, o que você quer mais, e mostra mais disto. Soa como um recurso benigno e útil, mas não é.

Em 2016, fui a commícios do então candidato Donald Trup para estudar o movimento de apoio. Estudei movimentos sociais, este era mais um deles. Então quis escrever algo sobre um dos comícios, então assisti vídeo dele algumas vezes no YouTube. O YouTube então começou a recomendar no autoplay vídeos de supremacistas brancos em ordem crescente de extremismo. Se eu assistia uma, me oferecia outro mais extremo ainda e dava autoplay. Se você assistir conteúdo de Hillary Clinton ou Bernie Sanders, YouTube recomenda e dá autoplay em conteúdo de conspiração da esquerda e daí ladeira abaixo.

Bem, você deve estar pensando: política é isto. Mas não. Não é sobre política. É apenas o algoritmo entendendo o comportamento humano. Uma vez assisti um vídeo sobre vegetarianismo no YouTube e a plataforma recomendou e deu autoplay em vídeo sobre tornar-se vegano. É como se você nucna fosse hardcore o suficiente par o YouTube

Então o que está acontecendo? O algoritmo do YouTube é proprietário, mas o que imagino que acontece é o seguinte. O algoritmo descobre que se você pode atrair as pessoas a pensar que pode mostrar sempre algo mais intenso, as pessoas estão mais propensas a se manter no site assistindo vídeo após vídeo pela “toca do coelho” enquanto o Google entrega anúncios. Agora, mas quando ninguém se importanta com a ética da loja, estes sites podem perfilar pessoas que são odiadores de judeus, que acham que judeus são parasitas e que possuem conteúdo explicitamente antisemita e entregar anúncios direcionados. Também podem mobilizar algoritmos para encontrar para você as audiências similares (look-alike audiences), pessoas que não tem conteúdo explicitamente anti-semita em seus perfis, mas que o algoritmo detecta que podem ser suscetíveis a estas mensagens, permitindo direcionar anúncios a elas também. Este pode ser um exemplo implausível mas é real. A ProPublica investigou isto e descobriu que pode fazer isto no Facebook, e o Facebook oferece automaticamente sugestões de como expandir esta audiência. Buzzfeed tentou o mesmo no Google e descobriu rapidamente que também pode ser feito na plataforma da Google. E nem sequer foi caro. O jornalista da ProPublica usou 30 dólares para conseguir anunciar para esta categoria.

No último ano, o gerente de mídias sociais da campanha de Donald Trump informou que estavam usando os dark posts (posts ocultos) no Facebook para desmobilizar pessoas, não para persuadi-las, mas para convencê-las a não votar. E para fazer isto, direcionaram conteúdo especificamente para homens afro-americanos em cidades chave como Philadelphia. Agora vou citar exatamente o que ele falou, palavra por palavra.

Eles estavam usando “posts não públicos com visibilidade controlada pela campanha, de modo que somente as pessoas que queremos os veriam. Nós modelamos isto. Vai afetar dramaticamente a capacidade dela (Hillary Clinton) de converter essas pessoas”.

O que há nestes dark posts? Não temos ideia. O Facebook não nos conta.

Então o Facebook também organiza algoritmicamente os posts que seus amigos põem no Facebook ou as páginas que você segue. Não te exibe tudo cronologicamente. Ele coloca em ordem no modo que o algoritmo avalia que vai te incentiviar a ficar mais tempo no site.

Isto possui várias consequências. Você pode pensar que alguém está desprezando você no Facebook. O algoritmo pode nunca mostrar seu post a eles. O algoritmo está priorizando alguns e enterrando os oturos.

Experimentos mostram que o algoritmo escolhe mostrar o que pode afetar suas emoções. Mas isto não é tudo. Também afeta comportamento político. Em 2010, durante as eleições de meio período (midterm elections), o Facebook fez um experimento com 61 milhões de pessoas que foi divulgado apenas depois do ocorrido. Algumas pessoas viam um conteúdo simples “Hoje é dia de eleições”, de forma simples. E algumas pessoas recebiam a visualização com as pequenas imagens de amigos que clicaram “Eu votei”. Uma simples modificação, certo? As imagens eram a única mudança, mas este post gerou 340 mil mais votantes naquela eleição, de acordo com pesquisa que foi confirmada pela contagem. Casual? Não. Em 2012, repetiram o mesmo experimento. Desta vez, a mensagem cívica exibida uma vez gerou mais 270 mil votantes. Como referência, as eleições de 2016 foram decididas por cerca de 100 mil votos. Agora, o Facebook pode também facilmente inferir sua posição política, mesmo que nunca as falou no site. Os algoritmos podem realizar isto de modo relativamente fácil. E se uma plataforma com este tipo de poder decide apoiar um candidato em relação a outro? Como poderíamos saber?

Começamos de um lugar relativamente inócuo – anúncios onine que nos perseguem – e chegamos a outro lugar. Como público e cidadãos, nós não sabemos mais se estamos vendo a mesma informação ou o quê qualquer pessoa está vendo. E sem uma base comum de informação, pouco a pouco, o debate público está se tornando impossível, e estamos apenas nos estágios iniciais disto. Estes algoritmos podem facilmente inferir coisas como etnia, religião e posição política, traços de personalidade [ver postagem relacionada], inteligência, felicidade, uso de substâncias viciantes, separação dos pais, idade e gênero, apenas através de likes no Facebook. Estes algoritmos podem identificar protestantes mesmo se suas faces estão parcialmente cobertas. Estes algoritmos podem identificar orientação sexual das pessoas apenas dos seus avatares.

Estas são inferências probabilísticas, então não são 100 porcento corretas, mas não vejo poderosos resistindo a tenação de usar estas tecnologias apenas porque existem alguns falsos positivos, o que cria uma nova camada de problemas. Imagine o quê um Estado pode fazer com esta quantidade enorme de dados que possuem sobre seus cidadãos. China já usa tecnologia de reconhecimento facial para identificar e prender pessoas. E aqui temos a tragédia: estamos construindo esta infraestrutura de vigilância autoritária apenas para fazer pessoas clicarem em anúncios. E este não será um autoritarianismo nos moldes de Orwell. Não é “1984”. Agora, se o autoritarianismo é usado para impor medo e nos aterrorizar, nós estaremos assustados mas saberemos. Odiaremos e resistiremos. Mas se as pessoas no poder estão usando estes algoritmos para silenciosamente nos vigiar, julgar e manipular, para prever e identificar os rebeldes e insatisfeitos, para aplicar arquiteturas de persuasão em escala para manipular indivíduos uma a um usando suas fraquezas e vulnerabilidades individuais, e se estão entregando a telas privadas para que sequer saibamos o que nossos co-cidadãos e vizinhos estão vendo, o autoritarianismo vai nos envolver como uma teia de aranha e nem sequer saberemos que fomos pegos.

A avaliação de mercado do Facebook está aproximando-se de meio trilhão de dólares. Chegou a este valor porque funciona muito bem como arquitetura de persuasão. Mas a esrtrutura de persuasão é a mesma quer você esteja vendendo sapatos quer você esteja vendendo política. Os algoritmos não entendem a diferença. Os mesmos algoritmos que são soltos em nós para nos tornar mais dispostos a publicidade também estão organizando nossos fluxos de informações pessoais, políticas e sociais, e é isto que tem que mudar.

Mas não me entenda errado: usamos estas plataformas digitais porque nos fornecem muita utilidade e valor. Eu uso o Facebook para me manter em contato com amigos e famílias em torno do mundo. Já escrevi o quanto mídias sociais são cruciais para movimentos sociais. Estudei como estas tecnologias podem ser usadas para contornar censura em torno do mundo. Não é que as pessoas que dirigem, digamos, Facebook ou Google estão maliciosamente e deliberadamente tentando tornar o país ou mundo mais polarizado e encorajar extremismo. Eu li as várias declerações bem-intencionadas dessas pessoas. Mas não são as intenções ou declarações das pessoas nas tecnologias que importam, são as estruturas e modelos de negócios que estão construindo. E este é o núcleo do problema. Ou o Facebook é uma enorme fraude de meio trilhão de dólares e os anúncios não funcionam e não existe uma arquitetura da persuasão, ou seu poder de influência é preocupante. É um ou outro, e o mesmo pode ser dito sobre o Google.

Então, o que podemos fazer? Isto precisa mudar. Agora não posso oferecer uma receita simples, porque precisamos reestruturar o modo pelo qual nossas tecnologias digitais operam. Todos os aspectos das tecnologias desenvolvidas, economicamente ou não, são incorporadas nos sistemas. Nós temos que enfrentar e tentar lidar com a falta de transparência criada pelos algoritmos proprietários, o desafio estrutural da opacidade do machine learning e todos os dados indiscriminados que são coletados sobre nós. Temos uma grande tarefa na nossa frente. Temos que mobilizar nossa teccologia, nossa criatividade e, sim, nossos políticos para que possamos criar inteligência artificial que nos apoie nos objetivos humanos mas que também sejam constritos pelos valores humanos. E entendo que isto não será fácil. Talvez nem vamos concordar facilmente o que estas condições significam. Mas se nós queremos tratar de forma séria sobre estes sistemas dos quais dependemos tanto para operar, não vejo como postergar ainda mais esta conversação. Estas estruturas estão organizando como funcionamos e estão controlando o que podemos e não podemos fazer. E várias dessas plataformas baseadas em anúncios enfatizam que são gratuitas. Neste contexto, significa que nós somos o produto sendo vendido. E precisamos de uma economia digital na qual nossos dados e atenção não estejam à venda para o demagogo ou autoritário com o maior lance.