Pensando Raça a partir da Teoria da Informação: a diferença que faz diferença

Praticamente qualquer aluno meu já me viu citar a frase “informação é a diferença que faz diferença”. Atribuída ao matemático Gregory Bateson, é um ótimo modo de debater a distinção entre dados e informação antes de chegar aos conceitos da pirâmide DIKW (Data, Information, Knowledge e Wisdom). O que Bateson quis dizer é que informação é uma observação que faz diferença para algum “objetivo” ou em termos de “efeitos” possíveis. Em sala de aula, uso o exemplo das cores das camisas e número de notebooks. As cores das roupas dos alunos podem compor uma “diferença” observável. Posso contar a distribuição das cores. O mesmo acontece com o número de notebooks. Mas, enquanto professor, somente esta segunda diferença “faz diferença” para meus objetivos: a partir do número de notebooks em sala posso planejar melhor as atividades práticas. As cores das roupas não são informação relevante pra mim. Por outro lado, podem se tornar informação em algum exemplo sobre análise cultural e moda (ex: anti-esquerdismo diminuiu o uso de vermelho? cariocas usam mais cores que paulistas?).

É a partir desta famosa frase do Gregory Bateson que o pesquisador Syed Mustafa Ali (Open University) inicia o artigo Race: The Difference that Makes a Difference publicado na tripleC em 2012. O autor busca entender as interseções das disciplinas da Teoria Racial Crítica e da Teoria Crítica da Informação e como elas tem abordado a questão.

Quanto às múltiplas áreas da Teoria da Informação, o autor resgata diferentes abordagens, sobretudo as colaborações do filósofo Luciano Floridi em torno da filosofia da informação, que se debruça sobre tópicos, métodos e teorias do campo para estudar suas definições e colaborações. Mais recentemente, a perspectiva das ciências sociais como o trabalho de Scott Lash e Christian Fuchs (autor também de Social Media: A Critical Introduction) trazem panoramas críticos de classe, gênero e raça mas, segundo Ali, priorizando a primeira a partir de frameworks neo-Marxistas.

A colaboração da Teoria Racial Crítica, então, é essencial para a questão de pesquisa proposta. Depois de citar a crescente re-leitura informada por discurso crítico sobre raça de filósofos pós-Iluminismo a partir do trabalho de Emmanuel Chukwudi Eze nos últimos 20 anos, Ali chega à conclusão de que a perspectiva informacional não tem sido realizada. Quando é realizada, tende a ser de um olhar mais sociológico do que filosófico, em itens como: a) exclusão digital; b) representação e relações de poder em ambientes online; c) o uso de tecnologias digitais para agendas de supremacistas brancos; e d) contribuições africanas e afro-americanas à teoria dos sistemas e cibernética.

 

Mas qual a colaboração que Teoria dos Sistemas e Teoria da Informação podem trazer ao entendimento sobre raça, racismo e processos de racialização?

A proposta que se aproxima do que o Mustafa Ali procura seria, para o autor, a formulação de racismo oferecida por Fuller Jr.:

“Um sistema de pensamento, discurso e ação operado por pessoas que se classificam como “brancas” e que usam engano, violência e/ou ameaça de violência para subjugar, usar e/ou abusar de pessoas classificadas como “não-brancas” sob condições que promovam a falsidade, injustiça e incorrigibilidade em uma ou mais áreas de atividade, para o fim último de manter, expandir e/ou refinar a prática da supremacia branca (racismo)” (1984, 301)

Na visão de Fuller Jr. racismo equivale a supremacia branca e é um sistema global composto de 9 áreas principais de atividades ou sub-sistemas: economia, educação, entretenimento, trabalho, lei, política, religião, sexo e guerra. Para Ali, a colaboração de Fuller Jr. é uma formulação que é orientada para raça de forma radicalmente alternativa a outros pensadores críticos como Giddens, Bourdieu e Habermas.

Em seguida, as definições de Teoria Racial Crítica e Teoria Crítica da Informação são vinculadas para propor uma abordagem hermenêutica reflexiva sobre raça e informação. Quanto ao termo informação, polissêmico, Ali referencia von Bayer para explicar que informação pode ser vista de forma dual tanto como inform-ação quanto in-formação. No primeiro sentido, se refere à transmissão de significados e no segundo se refere à transmissão de forma, que pode ser configuração, ordem, organização, padrão, estrutura ou relacionamento. Neste sentido, a circulação de alguns padrões de pensamento no mundo pode ser vista como informação, tal como a ideia de hierarquia racial, discriminação e dominação associadas à diferença racial.

Assim, é possível ver raça como sistema e como processo. Como sistema, Ali cita Charles Mills para afirmar que racismo pode e de fato existe em potência puramente estrutural, isto é, em termos de relações de poder incorporadas diferencialmente que não são sempre explicitamente intenacionais então não são dependentes de consciência para a continuidade de sua existência. Assim, a ideia de “contrato racial” proposta por Mills pode ser vista como:

that set of formal or in-formal agreements or meta-agreements (higher-level contracts about contracts, which set the limits of the contract’s validity) between the members of one subset of humans, henceforth designated by (shifting) “racial” (phenotypical/genealogical/cultural) criteria C1, C2, C3… as “white”, and coexten-sive (making due allowance for gender differentiation) with the class of full persons, to categorise the remaining subset of humans as “nonwhite” and of a different and inferior moral status

Barnor Hesse é a referência citada a seguir para falar de raça como processo. Para Ali,  mais do que estar correlacionado com a presença (ou ausência) de marcadores materiais no corpo,

“racialization [is] embodied in a series of onto-colonial taxonomies of land, climate, history, bodies, customs, language, all of which became sedimented metonymically, metaphorically, and normatively, as the assembled attributions of race”

Deste modo, a perspectiva consegue dar conta dos processos pelos quais racialização acontece nas interseções com contextos e projetos político-econômicos de poder em cada período, como o acirramento do ódio contra islâmicos nos EUA nos últimos 30 anos. Por fim, o artigo enfatiza a importância dessa aproximação entre as áreas da ciência da informação e da teoria racial crítica para abordar os processos de resgate de argumentos e ideais biológicos do conceito de raça graças a biometria, barateamento de testes genéticos e afins.

Para saber mais sobre o trabalho do Syed Musfata Ali, acompanhe suas páginas na Open UniversityResearchGate  ou confira a palestra abaixo:

Fake News. Velha prática, nome nome: o papel das mídias sociais

“Fake News” foi eleita a palavra do ano em 2016 pelo Dicionário Macquarie e em 2017 pela “Sociedade Americana do Dialeto” (The American Dislect Society”). A abundância informacional e aparente aceleração de mudanças comportamentais tem gerado novos termos tais como fake news, pós-verdade, selfie e afins. Na maioria dos casos estes novos termos trazem uma nova popularidade a práticas que já existiam como literalmente notícias falsas ou as barrigadas no jornalismo.

Eu, particularmente, não gosto de neologismos. Fake News sempre existiram seja por incompetência jornalística seja por projetos organizados. Há casos emblemáticos que se tornaram livros e são estudados e ensinados por nós em faculdades e disciplinas de análise do discurso. O impacto de notícias falsas sempre foi relevante pois a cobertura incompetente ou má intencionada costuma ser em manchetes  e destaques, enquanto as correções e erratas são notas de rodapé. Porém, historicamente, sabemos que alguns grupos sociais, como a esquerda ou minorias políticas e identitárias são alvos mais frequentes de fake news.

Mas será que as pessoas acreditam em fake News? Em levantamento recente realizado pelo INCT, brasileiros foram consultados sobre “fake News”. Será que os brasileiros acham que acreditam em fake News? Quase 70% acredita que não caem em fake news.

Além disto, a desconfiança depende do emissor e veículo. Os brasileiros confiam em notícias compartilhadas por amigos e familiares, o que sua viza a desconfiança com plataformas de redes sociais. Se é um amigo ou familiar compartilhando na própria mídia social, esta desconfiança diminui. Então fake news é um conceito performativo. A perseguição contra as chamadas “fake news” pode ajudar a criar ou intensificar novas relações de poder que podem, não paradoxalmente, ter malefícios na circulação de informações, sobretudo políticas.

Nos EUA podemos ver partidários do Trump chamando toda e qualquer notícia crítica ao político como “fake news”? Quem define o que é verdade e quem define o que é falso? No Brasil, o grupo que mais declara receber fake news, na pesquisa do INCT Instituto da Democracia e da Democratização da Comunicação, são os auto-declarados no extremo ideológico da direita.

 

Então trata-se de batalhas discursivas que tem a ver com poder. E queria trazer aqui uma definição de poder a partir do Latour. Ao falar das redes, o sociólogo usou a ideia de “ponto obrigatório de passagem”. Nos desenhos das redes e seus fluxos, poder é tornar-se na rede um ponto, um nó no qual todos precisam passar para agir. Monopólio sobre um tipo de força – hoje, trata-se da audiência, do tempo das pessoas.

De fato, estamos falando do poder de controlar boa parte da audiência, mídia e rastros de atividades humanas. Mas, para além disso, empresas como Facebook tem investido em outras áreas como tecnologias materiais, drones, satélites, realidade aumentada e infraestrutura de acesso. E as forças das interfaces entre tecnologia e comunicação estão concentradas sobretudo no chamado GAFA = sigla para dar conta de Google, Apple, Facebook e Amazon. Juntas, tem valor de mercado superior ao nosso PIB. Mas este poder é produzido sobretudo pela análise e aplicação da ciência.

A interpretação da realidade social mudou de locus. Os grandes levantamentos de dados sociais e demográficos nas últimas décadas são frutos de instituições do estado e universidades. O Censo, na maioria dos países, é o exemplo mais claro. Levanta dados de milhões de domicílios, mas a cada 5 ou 10 anos. Entretanto, velhas e novas corporações são cada vez mais intensamente calcadas em levantamento e cruzamento de bases de dados sobre seus clientes e usuários. Hoje, em certa medida, empresas como Facebook, Google, Amazon, Twitter, Uber e afins podem realizar alguns tipos de análises que deixam universidades de ponta a ver navios. Publicamos no blog do IBPAD uma lista de 10 coisas impressionantes que somente o Facebook consegue estudar sobre a sociedade.

Mas esta abundância de dados festejada por muitos como um novo momento da sociedade ou mesmo de ciências, como ideias de “viradas computacionais” escondem um aprofundamento do gap entre o que a sociedade civil, universidades ou mesmo estados conseguem fazer em relação a grandes corporações como Facebook e Google.

Assim como temos opacidade nos algoritmos que regem as plataformas digitais, também temos opacidade em como os dados que nós geramos são usados. Foram raros e assustadores alguns artigos publicados por cientistas do Facebook.

Nas eleições de 2012, o Facebook realizou experimento mostrando para parte dos americanos um banner sobre o dia das eleições. Para outra parte de usuários, mostrou o mesmo banner marcando quais amigos já foram votar. A estimativa de votos gerados pelo uso desse reforço social foi de 280 mil votos. Ou seja, uma pequena mudança na interface do Facebook fez 280 mil pessoas saírem de casa pra votar, por pressão dos amigos. Mas pressão mediada e escolhida pelo Facebook.

Dois anos depois, Facebook o publicou artigo sobre um experimento psicológico em massa. Modificou o algoritmo de exibição de notícias de 700 mil pessoas e para parte dessas pessoas, ofereceu publicações mais positivas, alto astral. Para outra parte, publicações negativas, sobre tragédias e afins. A partir daí provou que a exposição a mensagens positivas tem um impacto psicológico, pois as pessoas publicam mais coisas positivas. E vice-versa. Ou seja, brincou com as emoções de centenas de milhares de pessoas. Não preciso nem falar o quanto isto é problemático.

Desse modo, escândalos como Cambridge Analytica são úteis para gerar mais noção e consciência sobre os problemas mas, a rigor, a Cambridge Analytica foi um bode expiatório. O grande problema foi a microssegmentação que a Cambridge realizou, a rigor baseada em recursos do próprio Facebook.

A idealização de mídias sociais como mecanismos persuasivos por si só não é nova e utilizou como experimento aplicativos  jogos sociais dentro das plataformas. Em 2008 esteve muito em voga a captologia, que é a disciplina focada em gerar tecnologias de persuasão. Em alguns casos, para persuasão positiva na área de saúde, por exemplo, mas em outros focadas em mercado e política. O B J Fogg, pesquisador de Stanford, propôs em 2008 o conceito de “persuasão interpessoal de massa”.

Pela primeira vez, segundo B J Fogg, alguns sistemas reuniam estas seis características. Experiência Persuasiva, Estrutura Automatizada, Distribuição Social, Ciclo Rápido, Grafo Social Imenso e Impacto Mensurável. Alguns casos de sucesso mercadológico foram empresas como a Zynga que rapidamente alcançou centenas de milhões de usuários e permitiram empresas como o Facebook aprenderem bastante sobre mecanismos de persuasão com gamificação.

Então estudar os modos pelos quais as interfaces são construídas e editadas para fins específicos é essencial.

E aí temos um ponto cego nas pesquisas em comunicação. Este ponto cego são as plataformas de auto serviço publicitário em Facebook e Google anúncios. Falamos muito de algoritmos, mas esquecemos com frequência de suas aplicações na área de anúncios microssegmentados. Em parte me parece que isso acontece porque pesquisadores de comunicação não tem dinheiro, então experimentos que envolvem investimento deste tipo ficam de fora dos escopos.

Só que nestas eleições, a legislação eleitoral cedeu ao lobby de Facebook e de Google. E seus dois modelos de anúncio são os únicos aprovados para campanha eleitoral na internet. Entretanto, o modelo de leilão destas plataformas permite não só que grandes partidos dominem o ambiente com mensagens criadas para “viralizar” (em detrimento de qualidade de propostas e debate) como permite que outros atores interfiram de forma indireta

As soluções possíveis não são fáceis e passam por reconhecer pelo menos 5 grandes necessidades: a) Plataformas de mídias sociais devem ser vistas como construídas também por seus milhões de usuários – trabalho imaterial gratuito; b) Plataformas de mídias sociais são empresas de comunicação, não de “tecnologia” – reguladas por interesse público). c) “Auditoria” algorítmica e crítica da economia política das plataformas. d) Papel social do jornalismo abraçado pela sociedade. e) Promoção de alternativas midiáticas abertas (plataformas open source de blogs plataformas).

Os Riscos dos Vieses e Erros na Inteligência Artificial

O relatório An Intelligence in Our Image – The Risks of Bias and Errors in Artificial Intelligence foi lançado em 2017 pela RAND Corporation com o objetivo de lançar luz sobre vieses e erros na inteligência artificial e pontuar a relevância do debate sobre o tema. Foi escrito por Osonde Osoba, Doutor em Engenharia, e William Welser IV, Mestre em Finanças, ambos analistas da RAND.

O texto é estruturado em quatro capítulos: Introdução; Algoritmos: definição e avaliação; O Problema em Foco: fatores e remediações; Conclusão. Na introdução e parte inicial do segundo capítulo, os autores revisam histórico, definições e nuances dos principais tipos de “agentes artificiais” (conceito que engloba a junção de inteligência artificial em algoritmos efetivamente aplicados em sistemas decisórios). Sublinham em interessante trecho a opacidade dos sistemas algorítmicos com exemplos clássicos como a Google Flu Trends, crise financeira de 2008 e outros desastres em gestão pública.

Com a abundância de dados na “era do big data”, entretanto, a emergência dos sistemas de machine learning traz o debate para os modos pelos quais são construídos e suas vulnerabilidades quanto ao datasets de treino, etapa essencial mas comumente deixada de lado (e pouquíssimo debatida).

“Learning algorithms tend to be vulnerable to characteristics of their training data. This is a feature of these algorithms: the ability to adapt in the face of changing input. But algorithmic adaptation in response input data also presents an attack vector for malicious users. This data diet vulnerability in learning algorithms is a recurring theme.”

Partindo de casos documentados por Batya Friedman e Nissenbaum 22 anos atrás em Bias in Computer Systems, os autores trazem casos contemporâneos de redlining e até discriminação baseada em proxies de raça (como nomes tipicamente afro-americanos), chegando ao conceito de scored society de Citron e Pasquale.

they mean the current state in which unregulated, opaque, and sometimes hidden algorithms produce authoritative scores of individual reputation that mediate access to opportunity. These scores include credit, criminal, and employability scores. Citron and Pasquale particularly focused on how such systems violate reasonable expectations of due process, especially expectations of fairness, accuracy, and the existence of avenues for redress. They argue that algorithmic credit scoring has not reduced bias and discriminatory practices.

O relatório cita então trabalhos de Solon Barocas e Helen Nissenbaum que argumentam firmemente que o uso de big data para alimentar algoritmos não os torna mais neutros e justos, mas justamente o contrário. Além disto, os cuidados comumente empregados é esconder campos “sensíveis” nos dados em algoritmos de aprendizado, como raça e gênero. Porém, diversos estudos já mostraram que estas variáveis podem ser descobertas implicitamente e inseridas nos modelos para classificação discriminatória.

Em algumas áreas como vigilância e segurança pública, a aplicação inadequada de algoritmos e aprendizado de máquina podem ser fatais. Como demonstra trabalho da ProPublica, um sistema de “avaliação de risco criminal” que tinha como objetivo prever reincidência criminal errou de forma criminosa e racista. Réus negros estiveram sujeitos em dobro a serem classificados erroneamente como potenciais reincidentes violentos, enquanto réus brancos efetivamente reincidentes foram classificados erroneamente como de baixo risco 62.3% mais frequentemente que réus negros.

Departamentos de polícia tem usado algoritmos também para decidir onde e como alocar recursos de vigilância, para direcionar policiamento “preditivo”. Porém, a lógica inerente ao sistema tende a gerar mais erros e discriminação. O gráfico abaixo é uma simulação feita pelos autores sobre um hipotético sistema que aloca mais vigilância policial em uma determinada área ou grupo demográfico, por alguma decisão inicial no setup do sistema. Poderia ser, por exemplo, a série histórica de dados (uma região periférica que tenha histórico maior de crimes recebe mais vigilância inicialmente). No padrão destes sistemas de alocação, a vigilância maior nesta área vai crescentemente direcionar mais vigilância pois mais dados de crime serão gerados nesta área por causa, justamente, da vigilância. E nas interseções de classe, raça, país de origem e afins, esta dinâmica aumenta a desigualdade continuamente, criminalizando e piorando as condições das populações que inicialmente possuíam alguma desvantagem econômica ou de status.

No terceiro capítulo, os autores resumem os principais tipos de causas dos problemas e possíveis soluções. Sobre os vieses, relembram que um agente artificial é tão bom quanto os dados a partir dos quais aprende a tomar decisões. Uma vez que a geração de dados é um fenômeno social, está repleta de vieses humanos. Aplicar algoritmos tecnicamente corretos a dados enviesados apenas ensina os agentes artificiais a imitar e intensificar os vieses que os dados contêm. Outro ponto dos vieses é que os julgamentos nas esferas sociais e morais são difusas, raramente são critérios simples ou binários.  Quanto aos fatores técnicos, apontam problemas como disparidade de amostragem, adaptação e hacking social dos sistemas e variáveis sensíveis inferidas dos dados.

Mas, como combater todos estes problemas? O relatório também aponta alguns caminhos possíveis.

a) Algoritmos de Raciocínio Causal – os autores citam casos na Suprema Corte de uso de métodos quantitativos empíricos para ilustrar a desproporção de penas capitais no estado da Georgia (EUA), nos quais foram contestadas as relações causais. Algoritmos devem ser auditados quanto suas pretensões de fatores causais nas decisões – uma posição necessária uma vez que há defensores do poder da correlação no contexto do big data (o argumento de que o volume de dados seria suficiente para direcionar escolhas).

b) Literacia e Transparência sobre Algoritmos – combater vieses algoritmos passa também por um público educado a ponto de compreender os mecanismos pelos quais as desigualdades e injustiças podem ser geradas por sistemas mal construídos. Transparência informada e clara sobre os algoritmos presentes em plataformas de comunicação, educação e jurídicas pode avançar ainda mais o papel dos usuários em questionar, criticar e debater os sistemas.

c) Abordagens de Pessoal – Identificar os vieses e erros sistêmicos em algoritmos requerem não apenas conhecimento computacional, matemático e estatístico, mas também exposição à questionamentos e reflexões sobre questões da sociedade e políticas públicas. Frequentemente, entretanto, os criadores ou detentores das plataformas, sistemas e algoritmos não foram treinados ou expostos a formação sobre ética, sociologia ou ciência política.

d) Regulação – por fim, o papel de organismos regulatórios do estado e sociedade civil são essenciais e devem ser impulsionados pelo interesse da sociedade e campo acadêmico. Os autores apontam que a auditoria de algoritmos pode ser complexa tecnica, social e mercadologicamente. Entretanto, apoiam a proposta de Christian Sandvig de olhar não para as minúcias e tecnicalidades internas dos agentes artificiais, mas sim para as consequências de seus resultados, decisões e ações:

Certain audit types ignore the inner workings of artificial agents and judge them according to the fairness of their results. This is akin to how [ we often judge human agents: by the consequences of their outputs (decisions and actions) and not on the content or ingenuity of their code base (thoughts).

Para finalizar, mais uma dica de conteúdo. O pequeno vídeo abaixo é uma palestra de Osonde Osoba no TEDx Massachussets de dezembro de 2017. Osoba fala sobre os desafios de “tornar inteligência artificial justa”.

Confira mais trabalhos de Osoba em https://scholar.google.com/citations?user=w5oYjbYAAAAJ

Visualizando engajamento online sobre a epidemia Zika

No último janeiro, tive a oportunidade de participar de data sprint no evento Digital Media Winter Institute na Universidade Nova de Lisboa. Durante 5 dias, foram realizadas palestras, pratical labs e três grupos de data sprints – esforços coletivos de análise de dados de várias plataformas a partir de várias abordagens diferentes. O modelo de data sprint tem sido realizado por universidades em torno do mundo com bastante sucesso na construção de conhecimento coletivo e reunião de pesquisadores.

No evento foram realizados três sprints, dois sobre feminicídio e um sobre a epidemia Zika. Este último, que participei, foi liderado pelos pesquisadores Elaine Rabello (UERJ) e Gustavo Matta (FioCruz) e teve pesquisadores e designers de Portugal, Itália, Espanha e Brasil na equipe.

Ao longo dos três dias de trabalho, os pesquisadores se debruçaram sobre dados de Wikipedia, Google, Instagram e Facebook para entender como a epidemia Zika circula nestas plataformas, suas controvérsias emergem e vozes dominantes se destacam construindo discursos e posicionamentos.

O relatório resumido em slideshow foi publicado e pode ser visualizado abaixo, assim como o relatório completo no blog do Data Sprint em Visualising Engagement on Zika Epidemic.

Acesse também os relatórios sobre Mapping Femicide discourses on TwitterFemminicidio in Italian media and public debate. Fique de olho no Twitter e site do Inova Media Lab para saber mais e se preparar para os próximos.

Algoritmos de Opressão: como mecanismos de busca reforçam o racismo

Algoritmos e plataformas não são neutros. São construídos de modo que algumas visões de mundo, ideologias e pontos de vista se destacam e impõem-se, seja de forma intencional ou não. Apesar de estarmos em 2018 e centenas de pesquisadores, desenvolvedores e profissionais destacarem isto, a plataformização da mídia e do capitalismo através de empresas como Google, Facebook, Uber, AirBnB e similares surfa (e alimenta) a onda do individualismo, livre mercado e endeusamento estúpido da “tecnologia” para argumentar justamente o contrário: que seriam ambientes neutros por serem, justamente, criados com mecanismos de automatização de decisões livres da interferência humana.

Pesquisadores sérios e alguns segmentos da população como, por exemplo, mulheres negras, não podem se dar ao luxo de ignorar impacto e vieses dos algoritmos. Nesta interseção, a pesquisadora e professora Safiya U. Noble nos presenteou com a indispensável publicação de Algorithms of Oppression: how search engines reinforces racism lançado oficialmente neste mês de fevereiro de 2018. é Ph.D. pela University of Illinois, professora na University of Southern California (USC), previamente tendo ensinado também na UCLA, além de ser co-fundadora do Information Ethics & Equity Institute. Também é sócia de empresa focada em ciência de dados e pesquisa, a Stratteligence. Antes desse livro, co-editou “The Interesectional Internet: Race, Sex, Culture and Class Online” e “Emotions, Technology & Design”.

Em Algorithms of Oppression: how search engines reinforces racisma autora apresenta os resultados de ampla pesquisa sobre algoritmos e representação de determinados grupos, sobretudo mulheres e garotas negras no Google. A autora abre o primeiro capítulo, “A Society, Searching”, relembrando a campanha circulada pela UN Women que usou telas reais do recurso “Autocompletar” do buscador Google para mostrar como o sexismo e misoginia são representados pelas sugestões reais.

A campanha é o gancho para começar a discussão sobre a relevância e utilidade destes recursos como fortalecedores dos comportamentos que representam. Em seguida, a autora traz mais exemplos sobre representações de mulheres a partir de buscas tão simples quanto “black girls”, “why are women so” ou “why are Black people so” para mostrar como mecanismos de acesso a informação privilegiam pontos de vista de posições de poder – por exemplo, a hiperssexualização das garotas negras nos resultados é fruto de padrões de busca por conteúdo sexual e pornográfico, desrespeitando as mulheres negras como construtoras de narrativas e conteúdos próprios. Para tratar deste problema de pesquisa, Noble propõe a aplicação de uma abordagem com método e epistemologia feminista ao citar Sandra Harding, que diz que “Definir o que é necessário em termos de explicação científica apenas da perspectiva da experiência de homens brancos burgueses leva a compreensão parcial e até perversa da vida social”.

O segundo capítulo “Searching for Black Girls” traz diversos estudos de caso sobre representação de minorias políticas nos resultados da Google, para buscas como “black girls”, “latina girls”, “asian girls” etc.  A tela abaixo é inclusa no livro e mostra como os resultados para “black girls” oferecem uma representação pornográfica de meninas negras nos resultados.

Noble critica o uso puramente comercial, pela Google, de iniciativas como Black Girls Code, que não se reflete na melhoria de práticas na empresa de tecnologia ou na contratação minimamente representativa de profissionais negros. A distribuição de profissionais em empresas como a Google, Facebook e outras gigantes da tecnologia não representam nem de longe a distribuição de gênero e raça no país.

É especialmente relevante o fato de que a Google não só contrata engenheiros e cientistas da computação de forma enviesada, como também não constrói cargos e departamentos direcionados a tarefas de otimização da oferta de mídia quanto a diversidade cultural e respeito à humanidade dos seus clientes. Não são práticas novas, apesar das embalagens do Vale do Silício, como Noble demonstra ao fazer ligações destas representações ao histórico de construção de categorias raciais discriminatórias com fins de dominação. É imprescindível, então, adereçar a opacidades das tecnologias que regem as trocas comunicacionais:

“The more we can make transparent the political dimensions of technology, the more we might be able to intervene in the spaces where algorithms are becoming a substitute for public policy debates over resource distribution – from mortgages to insurance to educational opportunities”

O terceiro capítulo trata da representação de pessoas e comunidades na web em resultados de busca, especialmente o caso de sites de notícias falsas criadas por racistas supremacistas brancos nos EUA. Usando o exemplo de termos como “black on white crime”, a autora mostra como os resultados melhor rankeados levam a sites com dados falsos e cheios de discurso de ódio, com SERPs (“search engine results page”, termo usado geralmente para se referenciar à primeira página) que geram receita para a organização.

O quarto capítulo se debruça sobre ações realizadas por grupos e indivíduos para se proteger dos malefícios dos vieses dos mecanismos de busca e do registro ilegal ou antiético de dados. A partir de casos famosos como o IsAnyoneUp (site que hospedava ilegalmente “pornô de vingança”), a autora mostra correlatos relacionados à perfilização de indivíduos em categorias criminosas. Sites como UnpublishArrest e Mugshots cobram para retirar fotos de fichamento (“mugshots”) divulgadas amplamente na internet, que prejudicam indivíduos tanto culpados quanto inocentes. Como dados mostram, minorias étnicas são presas e fichadas de forma errônea e/ou abusiva com muito mais frequência nos EUA, o que leva a morosidade (4 a 6 semanas, quando acontece) de tentativas de “limpar” resultados de busca um mecanismo de intensificação da violência contra as minorias. O “direito ao esquecimento”, tema que já tratamos aqui no blog a partir de Mayer-Schonberger, é explorado a partir do pensamento de autores como Oscar Gandy Jr., mostrando alternativas para a materialização de aspectos negativos da ultra-racionalização enviesada da sociedade.

O fechamento deste capítulo tenta enfatizar a importância da retomada da transparência sobre decisões quanto a construção de índices e sistemas de informação:

In addition to public policy, we can reconceptualize the design of indexes of the web that might be managed by librarians and info rmation institutions and workers to radically shift our ability to contextualize information. This could lead to significantly greater transparency, rather than continuing to make the neoliberal capitalist project of commercial search opaque.

O quinto capítulo, então, parte para imaginar o “Future of Knowledge in the Public” a partir de uma revisão crítica sobre o histórico de problemas de classificação de temas, pessoas e grupos em repositórios de informação. Até muito recentemente categorias como “Jewish Question”, “Yellow Peril” eram usadas no sistema de classificação da Biblioteca do Congresso nos EUA, que estabelece os padrões seguidos no país. A dominação cultural sobre minorias é estruturada e materializada em códigos de enquadramento de estudos, literatura e pensamento sobre a sociedade de um modo que direciona as interpretações e desdobramentos possíveis. Sistemas de informação não são objetivos e não podem ser vistos dessa forma. Noble propõe seguir as recomendações do prof. Jonathan Furner para se aplicar Teoria Racial Crítica a estudos de informação, através de procedimentos como:

  •  Aceitação, pelos criadores dos sistemas, que os vieses existem e são resultados inevitáveis dos modos pelos quais são estruturados;
  • Reconhecimento que a aderência a uma política de neutralidade contribuir pouco para a erradicação dos vieses e pode, na verdade, estender suas existências;
  • Construção, coleta e análise de expressões narrativas de sentimentos, pensamentos e crenças de usuários de populações racialmente diversas dos esquema de classificação.

Buscando discutir como encontrar informação “culturalmente situada” na web, a autora explica o valor e potencial de alteridade de sites e buscadores focados em minorias como Blackbird (www.blackbirdhome.com),as BlackWebPortal (www.blackwebportal.com), BlackFind.com (www.blackfind.com), Jewogle (www.jewogle.com), Jewish.net (http://jewish.net/), JewGotIt (www.jewgotit.com) e  Maven Search (www.maven.co.il).

No sexto e último capítulo, “The Future of Information Culture”, Noble critica o monopólio da informação e o papel de organismos regulatórios como a FCC (Federal Communications Commission) nos EUA. Discutir o papel de organizações de mídia cada vez mais concentradas é uma questão de políticas públicas. A autora mostra, através da revisão de várias decisões judiciais, como os possíveis malefícios desta concentração tem impactos que são materializados em casos “extremos” ao mesmo tempo que influenciam a sociedade como um todo. A insistência de enquadrar ecossistemas da Google, Facebook e afins como “neutros”, como se não tivessem responsabilidade tais como organizações de mídia e imprensa também é endereçada pela autora. Para que a internet seja de fato uma fonte de oportunidades para as pessoas de forma democrática, os modos pelos quais suas principais propriedades são construídas deve estar sob princípios de transparência e acontabilidade.

Assim como a diversidade no Vale do Silício ter diminuído ao invés de aumentado nos últimos anos, a desigualdade econômica entre famílias brancas, negras e hispânicas cresceu. Segundo dados da Federal Reserve, o patrimônio líquido de famílias brancas era cerca de 10x o de famílias negras.

A autora traz as colaborações da pesquisa sobre exclusão digital para detalhar como aspectos econômicos, educacionais, culturais são materializados em três pontos principais de desigualdade quanto a tecnologia: acesso a computadores e softwares; desenvolvimento de habilidades e treinamento; e conectividade à Internet, como banda larga.

Por fim, como diz de forma “a desigualdade social não será resolvida por um app”. A nossa atual confiança excessiva nas tecnologias e auto-regulação de mercados esconde os impactos e decisões feitas dia a dia por profissionais, designers, engenheiros, cientistas e executivos de negócio que pecam por intenção ou omissão quanto à efetiva liberdade de expressão e uso da web. Somente a associação intencional, inteligente e diversa de pessoas de diferentes backgrounds profissionais e culturais engajadas em tornar o mundo um lugar melhor pode salvar a internet. As concepções neoliberais sobre mercado, comunicação e democracia vão contra este objetivo, como aponta em:

New, neoliberal conceptions of individual freedoms (especially in the realm of technology use) are oversupported in direct opposition to protections realized through large-scale organizing to ensure collective rights. This is evident in the past thirty years of active antilabor policies put forward by several administrations47 and in increasing hostility toward unions and twenty-first-century civil rights organizations such as Black Lives Matter. These proindividual, anticommunity ideologies have been central to the antidemocratic, anti-affirmative-action, antiwelfare, antichoice, and antirace discourses that place culpability for individual failure on moral failings of the individual, not policy decisions and social systems.

É possível ver uma palestra de Safiya U. Noble realizada no Personal Democracy Forum 2016 que cobre as ideias principais da publicação:

Saiba mais sobre o livro e o trabalho da autora em seu site: https://safiyaunoble.com/research-writing/