[O texto a seguir faz parte de uma série que pode ser visualizada em “Pontos, Linhas e Métricas: introdução à análise estrutural de redes sociais”]
Neste e no próximo texto vamos falar dos dois principais elementos das redes sociais, os nós e os laços. Ou, como nos referimos de forma super simplificada, nos referindo à sua visualização, os pontos e linhas. Mas, antes de qualquer coisa, é preciso lembrar o seguinte. Qualquer rede é uma representação convencional do que se está sendo observado. Manejar, construir e analisar redes envolve atos de escolha sobre o que será analisado.
Desta forma, uma análise pode considerar apenas uma pequena rede na qual se considera um nó cada pessoa e um laço cada relação de amizade. Outra, por sua vez, pode considerar cada nó um artigo acadêmico e um laço as referências bibliográficas. Tudo vai depender dos objetivos e informações buscadas. Para entendermos estes elementos básicos, precisamos entender bem o que são nós e laços. Vamos começar pelos primeiros:
Pontos | Nós | Vértices
Como puderam perceber, os nomes utilizados aqui para falar dos nós (e na próxima seção para falar das ligações) são muitos: pontos, nós, vértices…. Geralmente, existe pouca distinção entre um termo ou outro e, na maioria dos casos, não importa. Mas, como Barabási (2012, p.26) nos explica, na ciência das redes se fala de redes, nós (nodes) e laços (links), enquanto na teoria dos grafos se fala de grafo, vértices (vértices) e arestas (edges). A teoria dos grafos, proveniente da matemática, é uma das bases para a ciência das redes e sua análise estrututural, mas falaremos dela em uma postagem mais à frente.
Aqui, voltando aos nós, devemos pontuar que, na análise estrutural de redes sociais, os elementos analisados são aqueles que podem ser individualizados e representam algum ator social, grupo social ou produto realizado por estes. O conceito de nó é extremamente simples, como podemos ver nas definições que são dadas a estes, geralmente durante a própria apresentação do que é uma rede:
“Um grafo consiste de um conjunto de objetos, chamados nós, com certos pares destes objetos conectados por ligações chamadas arestas” (EASLEY & KLEINBERG, 2009, p.31);
“Nós são os atores individuais dentro das redes, enquanto laços são as relações entre os atores” (PASSMORE, 2011, p. 1);
“Enquanto os nós são geralmente representados pelos atores envolvidos e suas representações na internet […], as conexões são mais plurais em seu entendimento” (FRAGOSO, RECUERO e AMARAL, 2011, p.16);
“Vértices, também chamados de nós, agentes, entidades ou itens, podem representar muitas coisas. Frequentemente representam pessoas ou estruturas sociais como grupos de trabalho, times, organizações, instituições, estados ou mesmo países. Em outros casos eles representam conteúdo como web pages, tags keywords ou vídeos. Eles ainda podem representar locais ou eventos físicos ou virtuais. (HANSEN, SCHNEIDERMAN & SMITH, 2011, p.34).
Observe, na imagem abaixo, uma pequena rede. Cada um dos pontos serve para representar uma pessoa, por exemplo:
Cada um destes nós representa um dos elementos da rede. No caso, é uma rede construída em torno de atores sociais, pessoas. Nesta rede são 13 nós ao todo, como etiquetados abaixo:
É uma rede, com 13 elementos, com seus laços visíveis e que pode ser analisada de acordo com os nossos objetivos, por exemplo: encontrar que pessoas servem de “pontes” entre os grupos da rede, descobrir qual pessoa é mais conectada ou analisar sua densidade.
Como vimos, a análise estrutural de redes pode se debruçar sobre as redes e ligações entre diversos tipos de coisas: elementos químicos, servidores, aeroportos etc. No caso da análise estrutural de redes sociais, trabalhamos com pessoas, grupos e coisas que podem representar pessoas ou aspectos das pessoas. Às vezes, os nós podem ser tais objetos, que estão ligados ou desconectados entre si devido a outros parâmetros. O exemplo abaixo é de um projeto da Amazon Labs, que mostra a rede de co-ocorrência de compras em torno de um determinado livro.
O programa de visualização acima, produzido por Andrei Kashcha, cria um laço para cada livro recomendado pela Amazon no quesito “livros comprados juntos”. Em outras palavras, para cada livro no site, é criado um nó que tem laços com outros a partir das compras realizadas por usuários reais. Não existe um laço social propriamente dito entre as pessoas que nem sequer estão representadas diretamente nesta rede. Mas os laços apresentados são fruto de milhares de ações sociais (consumo) e, portanto, a rede pode ser considerada fruto das dinâmicas sociais e nos permitem apreender algumas tendências.
Voltando aos nós que representam diretamente atores sociais, podemos adicionar atributos aos nós analisados. Não é algo obrigatório, pois como enfatizamos no último post e estamos demonstrando, a simples estruturação dos nós em formato de rede, através das ligações, gera uma amplitude de informações. Mas os atuais programas de coleta e armazenamento de dados de redes permitem adicionar variáveis personalizadas. Por exemplo: idade, sexo, classe, categoria de cliente, etc. Novamente utilizando aquela rede como exemplo, digamos que desejamos mostrar visualmente o gênero da rede, utilizando as cores historicamente associadas aos conceitos de homem e mulher:
A visualização acima, extremamente simples, enfatiza algo muito importante para a análise de redes: é possível manipular as características visuais de todos os elementos das redes para mostrarmos as informações que desejamos. Neste caso, utilizamos duas cores (azul e vermelho) para representar uma codificação binária (homem/mulher). Mais para a frente, mostraremos como manipular tamanho, cor, formato, legendas, posição, opacidade e outros elementos.
Outro exemplo de dados que podem estar vinculados a cada um dos nós são os dados específicos dos perfis de mídias sociais, tais como Facebook e Twitter. Observem as imagens a seguir, que representam agrupamentos em rede e a wordcloud respectiva das bios:
Estas imagens são exemplo fruto de uma das etapas executadas em projetos de Perfilização de Público em Mídias Sociais (Social Media Public Profiling), uma metodologia que criei e explicarei mais à frente, como uma das aplicações da análise de redes sociais. Durante uma das etapas de coleta de dados, realizamos agrupamento (clustering) dos perfis de acordo com algoritmos de rede. Em seguida, extraímos e agrupamos as bios dos membros de cada grupo, para identificar um primeiro nível de afiliação. Isto foi possível porque cada perfil no Twitter, que aqui foi considerado um laço, traz alguns dados adicionais que foram analisados – neste caso, o texto declarativo do campo Bio.
Em resumo: os nós podem representar pessoas, organizações e objetos; podemos adicionar dados relacionais ou de atributos nos nós; e estes dados podem ser calculados e visualizados nas redes. Mas os nós só ganham o status de tais e suas importâncias em rede quando existem os laços, descritos a seguir.
Referências Bibliográficas
BARABÁSI, Albert-Laszló. Network Science. 2012.
PASSMORE, David. Social Network Analysis – Theory and Applications. Online, 2011.
EASLEY, David & KLEINBERG, Jon. Networks, Crowds and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010.